AP Precalculus FRQ Room

Ace the free response questions on your AP Precalculus exam with practice FRQs graded by Kai. Choose your subject below.

Which subject are you taking?

Knowt can make mistakes. Consider checking important information.

Pick your exam

AP Precalculus Free Response Questions

The best way to get better at FRQs is practice. Browse through dozens of practice AP Precalculus FRQs to get ready for the big day.

  • View all (250)
  • Unit 1: Polynomial and Rational Functions (67)
  • Unit 2: Exponential and Logarithmic Functions (62)
  • Unit 3: Trigonometric and Polar Functions (52)
  • Unit 4: Functions Involving Parameters, Vectors, and Matrices (69)
Unit 1: Polynomial and Rational Functions

Absolute Extrema and Local Extrema of a Polynomial

Consider the polynomial function $$p(x)= (x-3)^2*(x+3)$$.

Medium

Analysis of a Rational Function with Quadratic Components

Analyze the rational function $$f(x)= \frac{x^2 - 9}{x^2 - 4*x + 3}$$ and determine its key features

Medium

Analyzing a Rational Function with Asymptotes

Consider the rational function $$R(x)= \frac{(x-2)(x+3)}{(x-1)(x+4)}$$. Answer each part that follow

Medium

Analyzing End Behavior of a Polynomial

Consider the polynomial function $$f(x) = -2*x^4 + 3*x^3 - x + 5$$.

Easy

Average Rate of Change and Tangent Lines

For the function $$f(x)= x^3 - 6*x^2 + 9*x + 4$$, consider the relationship between secant (average

Medium

Average Rate of Change in a Quadratic Model

Let $$h(x)= x^2 - 4*x + 3$$ represent a model for a certain phenomenon. Calculate the average rate o

Easy

Average Rate of Change in Rational Functions

Let $$h(x)= \frac{3}{x-1}$$ represent the speed (in km/h) of a vehicle as a function of a variable x

Medium

Average Rate of Change of a Rational Function

For the rational function $$r(x)= \frac{4*x}{x+2}$$, answer the following:

Medium

Behavior Analysis of a Rational Function with Cancelled Factors

Consider the function $$f(x)=\frac{x^2-16}{x-4}$$. Analyze the behavior of the function at the point

Easy

Comparative Analysis of Even and Odd Polynomial Functions

Consider the functions $$f(x)= x^4 - 4*x^2 + 3$$ and $$g(x)= x^3 - 2*x$$. Answer the following parts

Easy

Comparative Analysis of Polynomial and Rational Functions

A function is defined piecewise by $$ f(x)=\begin{cases} x^2-4 & \text{if } x\le2, \\ \frac{x^2-4}{x

Medium

Complex Zeros and Conjugate Pairs

Consider the polynomial $$p(x)= x^4 + 4*x^3 + 8*x^2 + 8*x + 4$$. Answer the following parts.

Hard

Composite Function Analysis with Rational and Polynomial Functions

Consider the functions $$f(x)= \frac{x+2}{x-1}$$ and $$g(x)= x^2 - 3*x + 4$$. Let the composite func

Hard

Composite Functions and Inverses

Let $$f(x)= 3*(x-2)^2+1$$.

Medium

Concavity and Inflection Points of a Polynomial Function

For the function $$g(x)= x^3 - 3*x^2 - 9*x + 5$$, analyze the concavity and determine any inflection

Hard

Constructing a Function Model from Experimental Data

An engineer collects data on the stress (in MPa) experienced by a material under various applied for

Medium

Constructing a Rational Function from Graph Behavior

An unknown rational function has a graph with a vertical asymptote at $$x=3$$, a horizontal asymptot

Hard

Constructing a Rational Function Model with Asymptotic Behavior

An engineer is modeling the concentration of a pollutant over time with a rational function. The fun

Hard

Construction of a Polynomial Model

A company’s quarterly profit (in thousands of dollars) over five quarters is given in the table belo

Medium

Cubic Polynomial Analysis

Consider the cubic polynomial function $$f(x) = 2*x^3 - 3*x^2 - 12*x + 8$$. Analyze the function as

Medium

Degree Determination from Finite Differences

A researcher records the size of a bacterial colony at equal time intervals, obtaining the following

Easy

Designing a Piecewise Function for a Temperature Model

A city experiences distinct temperature patterns during the day. A proposed model is as follows: for

Hard

Designing a Rational Function to Meet Given Criteria

A mathematician wishes to construct a rational function R(x) that satisfies the following properties

Extreme

Determining Function Behavior from a Data Table

A function $$f(x)$$ is represented by the table below: | x | f(x) | |-----|------| | -3 | 10 |

Easy

Determining Polynomial Degree from Finite Differences

A function $$f(x)$$ is defined on equally spaced values of $$x$$, with the following data: | x | f(

Easy

Engineering Application: Stress Analysis Model

In a stress testing experiment, the stress $$S(x)$$ on a component (in appropriate units) is modeled

Medium

Expanding a Binomial: Application of the Binomial Theorem

Expand the expression $$ (x+2)^5 $$ using the Binomial Theorem and answer the following:

Easy

Exploring Domain Restrictions via Inverse Functions in a Quadratic Model

Consider the quadratic function $$f(x)= -x^2 + 6*x - 8$$. Answer the following questions regarding i

Medium

Exploring Polynomial Function Behavior

Consider the polynomial function $$f(x)= 2*(x-1)^2*(x+2)$$, which is used to model a physical trajec

Easy

Finding and Interpreting Inflection Points

Consider the polynomial function $$f(x)= x^3 - 6*x^2 + 9*x + 1$$. Answer the following parts.

Medium

Function Model Construction from Data Set

A data set shows how a quantity V changes over time t as follows: | Time (t) | Value (V) | |-------

Medium

Function Transformations and Parent Functions

The parent function is $$f(x)= x^2$$. Consider the transformed function $$g(x)= -3*(x-4)^2 + 5$$. An

Easy

Interpreting Transformations of Functions

The parent function is $$f(x)= x^2$$. A transformed function is given by $$g(x)= -3*(x+2)^2+5$$. Ans

Easy

Intersection of Functions in Supply and Demand

Consider two functions that model supply and demand in a market. The supply function is given by $$f

Medium

Inverse Analysis Involving Multiple Transformations

Consider the function $$f(x)= 5 - 2*(x+3)^2$$. Answer the following questions regarding its inverse

Medium

Inverse Analysis of a Polynomial Function with Multiple Turning Points

Consider the function $$f(x)= (x-2)^3 - 3*(x-2) + 1$$. Answer the following about its invertibility

Hard

Inverse of a Complex Rational Function

Consider the function $$f(x)=\frac{3*x+2}{2*x-1}$$. Answer the following questions regarding its inv

Medium

Investigating a Real-World Polynomial Model

A physicist models the vertical trajectory of a projectile by the quadratic function $$h(t)= -5*t^2+

Easy

Investigating End Behavior of a Polynomial Function

Consider the polynomial function $$f(x)= -4*x^4+ x^3+ 2*x^2-7*x+1$$.

Easy

Local and Global Extrema in a Polynomial Function

Consider the polynomial function $$f(x)= x^3 - 6*x^2 + 9*x + 15$$. Determine its local and global ex

Hard

Logarithmic and Exponential Equations with Rational Functions

A process is modeled by the function $$F(x)= \frac{3*e^{2*x} - 5}{e^{2*x}+1}$$, where x is measured

Extreme

Logarithmic Linearization in Exponential Growth

An ecologist is studying the growth of a bacterial population in a laboratory experiment. The popula

Easy

Modeling a Real-World Scenario with a Rational Function

A biologist is studying the concentration of a nutrient in a lake. The concentration (in mg/L) is mo

Easy

Modeling Population Growth with a Polynomial Function

A population of a certain species in a controlled habitat is modeled by the cubic function $$P(t)= -

Medium

Modeling Vibration Data with a Cubic Function

A sensor records vibration data over time, and the data appears to be modeled by a cubic function of

Hard

Modeling with Inverse Variation: A Rational Function

A physics experiment models the intensity $$I$$ of light as inversely proportional to the square of

Easy

Parameter Identification in a Rational Function Model

A rational function modeling a certain phenomenon is given by $$r(x)= \frac{k*(x - 2)}{x+3}$$, where

Easy

Piecewise Function without a Calculator

Let the function $$f(x)=\begin{cases} x^2-1 & \text{for } x<2, \\ \frac{x^2-4}{x-2} & \text{for } x\

Medium

Polynomial Interpolation and Curve Fitting

A set of three points, $$(1, 3)$$, $$(2, 8)$$, and $$(4, 20)$$, is known to lie on a quadratic funct

Easy

Polynomial Long Division and Slant Asymptote

Consider the function $$P(x)= \frac{2*x^3 - 3*x^2 + x - 5}{x-2}$$. Answer the following parts.

Hard

Polynomial Long Division and Slant Asymptotes

Consider the rational function $$R(x)= \frac{2*x^3+3*x^2-5*x+4}{x^2-1}$$.

Hard

Polynomial Model Construction and Interpretation

A company’s profit (in thousands of dollars) over time t (in months) is modeled by the quadratic fun

Easy

Rate of Change in a Quadratic Function

Consider the quadratic function $$f(x)= 2*x^2 - 4*x + 1$$. Answer the following parts regarding its

Medium

Rational Function Analysis for Signal Processing

A signal processing system is modeled by the rational function $$R(x)= \frac{2*x^2 - 3*x - 5}{x^2 -

Medium

Rational Function and Slant Asymptote Analysis

A study of speed and fuel efficiency is modeled by the function $$F(x)= \frac{3*x^2+2*x+1}{x-1}$$, w

Hard

Rational Function Asymptotes and Holes

Consider the rational function $$r(x)=\frac{x^2 - 4}{x^2 - x - 6}$$. Analyze the function according

Medium

Rational Function Inverse Analysis

Consider the rational function $$f(x)=\frac{2*x-1}{x+3}$$. Answer the following questions regarding

Hard

Rational Function: Machine Efficiency Ratios

A machine's efficiency is modeled by the rational function $$E(x) = \frac{x^2 - 9}{x^2 - 4*x + 3}$$,

Medium

Rational Inequalities and Test Intervals

Solve the inequality $$\frac{x-3}{(x+2)(x-1)} < 0$$. Answer the following parts.

Medium

Regression Model Selection for Experimental Data

Experimental data was collected, and the following table represents the relationship between a contr

Extreme

Roller Coaster Track Polynomial Analysis

A section of a roller coaster track is modeled by a polynomial function $$h(x)$$ which gives the hei

Hard

Solving a Logarithmic Equation with Polynomial Bases

Consider the equation $$\log_2(p(x)) = x + 1$$ where $$p(x)= x^2+2*x+1$$.

Easy

Solving Polynomial Inequalities

Consider the polynomial $$p(x)= x^3 - 5*x^2 + 6*x$$. Answer the following parts.

Medium

Transformation and Inversions of a Rational Function

A manufacturer models the cost per unit with the function $$C(x)= \frac{5*x+20}{x-2}$$, where x is t

Hard

Use of Logarithms to Solve for Exponents in a Compound Interest Equation

An investment of $$1000$$ grows continuously according to the formula $$I(t)=1000*e^{r*t}$$ and doub

Easy

Zeros and Complex Conjugates in Polynomial Functions

A polynomial function of degree 4 is known to have real zeros at $$x=1$$ and $$x=-2$$, and two non-r

Easy

Zeros and End Behavior in a Higher-Degree Polynomial

Consider the polynomial $$P(x)= (x+1)^2 (x-2)^3 (x-5)$$. Answer the following parts.

Easy
Unit 2: Exponential and Logarithmic Functions

Acoustics and the Logarithmic Scale

The sound intensity level (in decibels) of a sound is given by the function $$f(x)=10*\log_{10}(x)$$

Medium

Analyzing a Logarithmic Function from Data

A scientist proposes a logarithmic model for a process given by $$f(x)= \log_2(x) + 1$$. The observe

Medium

Arithmetic Sequence Analysis

Consider an arithmetic sequence with initial term $$a_0$$ and common difference $$d$$. Analyze the c

Easy

Comparing Arithmetic and Exponential Models in Population Growth

Two neighboring communities display different population growth patterns. Community A increases by a

Hard

Comparing Exponential and Linear Growth in Business

A company is analyzing its revenue over several quarters. They suspect that part of the growth is li

Medium

Comparing Linear and Exponential Growth Models

A company is analyzing its profit growth using two distinct models: an arithmetic model given by $$P

Medium

Comparing Linear and Exponential Revenue Models

A company is forecasting its revenue growth using two models based on different assumptions. Initial

Medium

Competing Exponential Cooling Models

Two models are proposed for the cooling of an object. Model A is $$T_A(t) = T_env + 30·e^(-0.5*t)$$

Hard

Composite Exponential-Logarithmic Functions

Let f(x) = log₃(x) and g(x) = 2·3ˣ. Analyze the following compositions.

Medium

Composite Function and Its Inverse

Let \(f(x)=3\cdot2^{x}\) and \(g(x)=x-1\). Consider the composite function \(h(x)=f(g(x))\). (a) Wr

Medium

Composite Function Involving Exponential and Logarithmic Components

Consider the composite function defined by $$h(x) = \log_5(2\cdot 5^x + 3)$$. Answer the following p

Extreme

Composite Functions Involving Exponential and Logarithmic Functions

Let $$f(x) = e^x$$ and $$g(x) = \ln(x)$$. Explore the compositions of these functions and their rela

Easy

Composite Functions with Exponential and Logarithmic Elements

Given the functions $$f(x)= \ln(x)$$ and $$g(x)= e^x$$, analyze their compositions.

Easy

Composite Functions: Shifting and Scaling in Log and Exp

Consider the functions $$f(x)=2*e^(x-3)$$ and $$g(x)=\ln(x)+4$$.

Medium

Composition and Transformation Functions

Let $$g(x)= \log_{5}(x)$$ and $$h(x)= 5^x - 4$$.

Hard

Composition of Exponential and Log Functions

Consider the functions $$f(x)=\ln(x)$$ and $$g(x)=2*e^(x)$$.

Medium

Composition of Exponential and Logarithmic Functions

Consider the functions $$f(x)= \log_5\left(\frac{x}{2}\right)$$ and $$g(x)= 10\cdot 5^x$$. Answer th

Medium

Compound Interest and Exponential Equations

An investment account is compounded continuously with an initial balance of $$1000$$ and an annual i

Medium

Compound Interest and Financial Growth

An investment account earns compound interest annually. An initial deposit of $$P = 1000$$ dollars i

Easy

Compound Interest vs. Simple Interest

A financial analyst is comparing two interest methods on an initial deposit of $$10000$$ dollars. On

Medium

Data Modeling: Exponential vs. Linear Models

A scientist collected data on the growth of a substance over time. The table below shows the measure

Medium

Domain, Range, and Inversion of Logarithmic Functions

Consider the logarithmic function \(f(x)=\log_{2}(x-3)\). (a) Determine the domain and range of \(f

Easy

Earthquake Intensity and Logarithmic Function

The Richter scale measures earthquake intensity using a logarithmic function. Suppose the energy rel

Easy

Earthquake Intensity on the Richter Scale

The Richter scale defines earthquake magnitude as \(M = \log_{10}(I/I_{0})\), where \(I/I_{0}\) is t

Medium

Earthquake Magnitude and Energy Release

Earthquake energy is modeled by the equation $$E = k\cdot 10^{1.5M}$$, where $$E$$ is the energy rel

Medium

Earthquake Magnitude and Logarithms

The Richter scale is logarithmic and is used to measure earthquake intensity. The energy released, \

Hard

Environmental Pollution Decay

The concentration of a pollutant in a lake decays exponentially due to natural processes. The concen

Medium

Exploring the Properties of Exponential Functions

Analyze the exponential function $$f(x)= 4 * 2^x$$.

Easy

Exponential Decay and Half-Life

A radioactive substance decays according to an exponential decay function. The substance initially w

Medium

Exponential Decay: Modeling Half-Life

A radioactive substance decays with a half-life of 5 years. At \(t = 10\) years, the mass of the sub

Hard

Exponential Equations via Logarithms

Solve the exponential equation $$3 * 2^(2*x) = 6^(x+1)$$.

Hard

Exponential Function Transformation

An exponential function is given by $$f(x) = 2 \cdot 3^x$$. Analyze the effects of various transform

Medium

Exponential Inequality Solution

Solve the inequality $$5^(2*x - 1) < 3·5^(x)$$ for x.

Hard

Fitting a Logarithmic Model to Sales Data

A company observes that its sales revenue (in thousands of dollars) based on advertising spend (in t

Hard

General Exponential Equation Solving

Solve the equation $$2^{x}+2^{x+1}=48$$. (a) Factor the equation by rewriting \(2^{x+1}\) in terms

Hard

Geometric Investment Growth

An investor places $$1000$$ dollars into an account that grows following a geometric sequence model.

Medium

Geometric Sequence and Exponential Modeling

A geometric sequence can be viewed as an exponential function defined by a constant ratio. The table

Medium

Graphical Analysis of Inverse Functions

Given the exponential function f(x) = 2ˣ + 3, analyze its inverse function.

Medium

Inverse and Domain of a Logarithmic Transformation

Given the function $$f(x) = \log_3(x - 2) + 4$$, answer the following parts.

Medium

Inverse Function of an Exponential Function

Consider the function $$f(x)= 3\cdot 2^x + 4$$.

Hard

Inverse Functions of Exponential and Log Functions

Let \(f(x)=4\cdot3^{x}\) and \(g(x)=\log_{3}(x/4)\). (a) Show that \(f(g(x))=x\) for all \(x\) in t

Easy

Investment Scenario Convergence

An investment yields returns modeled by the infinite geometric series $$S=500 + 500*r + 500*r^2 + \c

Easy

Loan Payment and Arithmetico-Geometric Sequence

A borrower takes a loan of $$10,000$$ dollars. The loan accrues a monthly interest of 1% and the bor

Hard

Logarithmic Cost Function in Production

A company’s cost function is given by $$C(x)= 50+ 10\log_{2}(x)$$, where $$x>0$$ represents the numb

Medium

Logarithmic Equation and Extraneous Solutions

Solve the logarithmic equation $$log₂(x - 1) + log₂(3*x + 2) = 3$$.

Hard

Logarithmic Function Analysis

Consider the logarithmic function $$f(x) = 3 + 2·log₅(x - 1)$$.

Medium

Logarithmic Transformation and Composition of Functions

Let $$f(x)= \log_3(x)$$ and $$g(x)= 2^x$$. Using these functions, answer the following:

Hard

Model Error Analysis in Exponential Function Fitting

A researcher uses the exponential model $$f(t) = 100 \cdot e^{0.05t}$$ to predict a process. At \(t

Hard

Modeling Bacterial Growth with Exponential Functions

A research laboratory is tracking the growth of a bacterial culture. A graph showing experimental da

Medium

pH Measurement and Inversion

A researcher uses the function $$f(x)=-\log_{10}(x)+7$$ to measure the pH of a solution, where $$x$$

Easy

Population Growth Inversion

A town's population grows according to the function $$f(t)=1200*(1.05)^(t)$$, where $$t$$ is the tim

Medium

Population Growth of Bacteria

A bacterial colony doubles in size every hour, so that its size follows a geometric sequence. Recall

Medium

Radioactive Decay Analysis

A radioactive substance decays exponentially over time according to the function $$f(t) = a * b^t$$,

Easy

Radioactive Decay and Half-Life Estimation Through Data

A radioactive substance decays exponentially according to the function $$f(t)= a * b^t$$. The follow

Easy

Radioactive Decay Modeling

A radioactive substance decays with a half-life of $$5$$ years. A sample has an initial mass of $$80

Medium

Real Estate Price Appreciation

A real estate property appreciates according to an exponential model and receives an additional fixe

Hard

Shifted Exponential Function Analysis

Consider the exponential function $$f(x) = 4e^x$$. A transformed function is defined by $$g(x) = 4e^

Medium

Solving Exponential Equations Using Logarithms

Solve the exponential equation $$5\cdot2^{(x-2)}=40$$. (a) Isolate the exponential term and solve f

Easy

Telephone Call Data Analysis on Semi-Log Plot

A telecommunications company records the number of calls received each hour. The data suggest an exp

Medium

Transformation Effects on Exponential Functions

Consider the function $$f(x) = 3 \cdot 2^x$$, which is transformed to $$g(x) = 3 \cdot 2^{(x+1)} - 4

Medium

Translated Exponential Function and Its Inverse

Consider the function $$f(x)=5*2^(x+3)-8$$. Analyze its properties by confirming its one-to-one natu

Easy

Wildlife Population Decline

A wildlife population declines by 15% each year, forming a geometric sequence.

Easy
Unit 3: Trigonometric and Polar Functions

Amplitude and Period Transformations

A Ferris wheel ride is modeled by a sinusoidal function. The ride has a maximum height of 75 ft and

Medium

Analysis of a Rose Curve

Examine the polar equation $$r=3*\sin(3\theta)$$.

Hard

Analyzing a Rose Curve

Consider the polar equation $$r=3\,\sin(2\theta)$$.

Medium

Analyzing Damped Oscillations

A mass-spring system oscillates with damping according to the model $$y(t)=10*\cos(2*\pi*t)*e^{-0.5

Hard

Analyzing Phase Shifts in Sinusoidal Functions

Investigate the function $$y=\sin\Big(2*(x-\frac{\pi}{3})\Big)+0.5$$ by identifying its transformati

Medium

Applying Sine and Cosine Sum Identities in Modeling

A researcher uses trigonometric sum identities to simplify complex periodic data. Consider the ident

Medium

Calculating the Area Enclosed by a Polar Curve

Consider the polar curve $$r=2*\cos(θ)$$. Without performing any integral calculations, use symmetry

Hard

Comparing Sinusoidal Function Models

Two models for daily illumination intensity are given by: $$I_1(t)=6*\sin\left(\frac{\pi}{12}(t-4)\r

Medium

Concavity in the Sine Function

Consider the function $$h(x) = \sin(x)$$ defined on the interval $$[0, 2\pi]$$.

Medium

Conversion between Rectangular and Polar Coordinates

Given the point in rectangular coordinates $$(-3, 3\sqrt{3})$$, perform the following tasks.

Medium

Converting and Graphing Polar Equations

Consider the polar equation $$r=2*\cos(\theta)$$.

Medium

Coordinate Conversion

Convert the point $$(-\sqrt{3}, 1)$$ from rectangular coordinates to polar coordinates, and then con

Medium

Damped Oscillations: Combining Sinusoidal Functions and Geometric Sequences

A mass-spring system oscillates with decreasing amplitude following a geometric sequence. Its displa

Hard

Daylight Variation Model

A company models the variation in daylight hours over a year using the function $$D(t) = 10*\sin\Big

Medium

Evaluating Sine and Cosine Values Using Special Triangles

Using the properties of special triangles, answer the following:

Easy

Exploring Inverse Trigonometric Functions

Consider the inverse sine function $$\arcsin(x)$$, defined for \(x\in[-1,1]\).

Easy

Exploring Rates of Change in Polar Functions

Given the polar function $$r(\theta) = 2 + \sin(\theta)$$, answer the following:

Hard

Extracting Sinusoidal Parameters from Data

The function $$f(x)=a\sin[b(x-c)]+d$$ models periodic data, with the following values provided: | x

Easy

Graph Interpretation from Tabulated Periodic Data

A study recorded the oscillation of a pendulum over time. Data is provided in the table below showin

Medium

Graphing and Analyzing a Transformed Sine Function

Consider the function $$f(x)=3\sin\left(2\left(x-\frac{\pi}{4}\right)\right)+1$$. Answer the followi

Medium

Graphing and Transforming a Function and Its Inverse

Examine the function $$f(x)=\cos(x)$$ defined on the interval $$[0,\pi]$$ and its inverse.

Medium

Graphing Polar Circles and Roses

Analyze the following polar equations: $$r=2$$ and $$r=3*\cos(2\theta)$$.

Medium

Graphing Sine and Cosine Functions from the Unit Circle

Using information from special right triangles, answer the following:

Easy

Graphing the Tangent Function and Analyzing Asymptotes

Consider the function $$y = \tan(x)$$. Answer the following:

Medium

Interpreting Trigonometric Data Models

A set of experimental data capturing a periodic phenomenon is given in the table below. Use these da

Medium

Inverse Tangent Composition and Domain

Consider the composite function $$f(x) = \arctan(\tan(x))$$.

Extreme

Inverse Trigonometric Analysis

Consider the inverse sine function $$y = \arcsin(x)$$ which is used to determine angle measures from

Easy

Inverse Trigonometric Function Analysis

Consider the function $$f(x) = 2*\sin(x)$$.

Medium

Limacons and Cardioids

Consider the polar function $$r=1+2*\cos(\theta)$$.

Hard

Modeling Daylight Hours with a Sinusoidal Function

A study in a northern city recorded the number of daylight hours over the course of one year. The ob

Medium

Modeling Daylight Hours with a Sinusoidal Function

A city's daylight hours throughout the year are periodic. At t = 0 months, the city experiences maxi

Medium

Modeling Daylight Hours with a Sinusoidal Function

A city's daylight hours vary seasonally and are modeled by $$D(t)=11+1.5\sin\left(\frac{2\pi}{365}(t

Medium

Modeling Tidal Heights with Periodic Data

An oceanographer records tidal heights (in meters) over a 6-hour period. The following table gives t

Hard

Modeling Tides with Sinusoidal Functions

Tidal heights at a coastal location are modeled by the function $$H(t)=2\,\sin\Bigl(\frac{\pi}{6}(t-

Easy

Pendulum Motion and Periodic Phenomena

A pendulum's angular displacement from the vertical is observed to follow a periodic pattern. Refer

Medium

Period Detection and Frequency Analysis

An engineer analyzes a signal modeled by $$P(t)=6*\cos(5*(t-1))$$.

Medium

Periodic Temperature Variation Model

A town's temperature is modeled by the function $$T(t)=10*\cos(\frac{\pi}{12}*(t-6))+20$$, where t r

Easy

Polar Coordinates Conversion

Convert between Cartesian and polar coordinates and analyze related polar equations.

Medium

Polar Function with Rate of Change Analysis

Given the polar function $$r(\theta)=2+\sin(\theta)$$, analyze its behavior.

Medium

Polar Graphs: Conversion and Analysis

Analyze the polar equation $$r=4*\cos(\theta)+3$$.

Hard

Polar Interpretation of Periodic Phenomena

A meteorologist models wind speed variations with direction over time using a polar function of the

Hard

Polar Rate of Change

Consider the polar function $$r = 3 + \sin(\theta)$$.

Medium

Reciprocal Trigonometric Functions

Consider the function $$f(x)=\sec(x)=\frac{1}{\cos(x)}\).

Medium

Sine and Cosine Graph Transformations

Consider the functions $$f(\theta)=\sin(\theta)$$ and $$g(\theta)=\sin(\theta+\frac{\pi}{3})$$, whic

Easy

Sinusoidal Data Analysis

An experimental setup records data that follows a sinusoidal pattern. The table below gives the disp

Medium

Sinusoidal Transformations

The function $$g(x) = 2*\cos(3*(x - \frac{\pi}{4})) - 1$$ is a transformed cosine wave.

Medium

Solving a Basic Trigonometric Equation

Solve the trigonometric equation $$2\cos(x)-1=0$$ for $$0 \le x < 2\pi$$.

Easy

Solving a Trigonometric Equation

Solve the trigonometric equation $$2*\sin(\theta)+\sqrt{3}=0$$ for all solutions in the interval $$[

Easy

Solving Trigonometric Equations in a Specified Interval

Solve the given trigonometric equations within specified intervals and explain the underlying reason

Easy

Tangent Function and Asymptotes

Examine the function $$f(\theta)=\tan(\theta)$$ defined on the interval $$\left(-\frac{\pi}{2}, \fra

Medium

Trigonometric Inequality Solution

Solve the inequality $$\sin(x) > \frac{1}{2}$$ for $$x$$ in the interval $$[0, 2\pi]$$.

Easy

Understanding Coterminal Angles Through Art Installation

An artist designing a circular mural plans to use repeating motifs based on angles. Answer the follo

Easy
Unit 4: Functions Involving Parameters, Vectors, and Matrices

Acceleration in a Vector-Valued Function

Given the particle's position vector $$\mathbf{r}(t) = \langle t^2, t^3 - 3*t \rangle$$, answer the

Medium

Analysis of a Particle's Parametric Path

A particle moves in the plane with parametric equations $$x(t)=t^2 - 3*t + 2$$ and $$y(t)=4*t - t^2$

Medium

Analysis of Vector Directions and Transformations

Given the vectors $$\mathbf{a}=\langle -1,2\rangle$$ and $$\mathbf{b}=\langle 4,3\rangle$$, perform

Hard

Analyzing a Piecewise Function Representing a Linear Transformation

Let $$T(x)=\begin{cases} \frac{2x-4}{x-2} & \text{if } x \neq 2, \\ 3 & \text{if } x=2 \end{cases}$$

Easy

Average Rate of Change in Parametric Motion

For the parametric functions $$x(t) = t^3 - 3*t + 2$$ and $$y(t) = 2*t^2 - t$$ defined for $$t \in [

Medium

Circular Motion Parametrization

Consider a particle moving along a circular path defined by the parametric equations $$x(t)= 5*\cos(

Medium

Composition of Linear Transformations

Given matrices $$A=\begin{pmatrix}2 & 0 \\ 0 & 3\end{pmatrix}$$ and $$B=\begin{pmatrix}0 & 1 \\ 1 &

Hard

Composition of Transformations and Inverses

Let $$A=\begin{bmatrix}2 & 3\\ 1 & 4\end{bmatrix}$$ and consider the linear transformation $$L(\vec{

Extreme

Computing Average Rate of Change in Parametric Functions

Consider a particle moving with its position given by $$x(t)=t^2 - 4*t + 3$$ and $$y(t)=2*t + 1$$. A

Medium

Determinant and Inverse Calculation

Given the matrix $$C = \begin{pmatrix} 4 & 7 \\ 2 & 6 \end{pmatrix}$$, answer the following:

Easy

Discontinuity Analysis in an Implicitly Defined Function

Consider the circle defined by $$x^2+y^2=4$$. A piecewise function for $$y$$ is attempted as $$y(x)=

Medium

Discontinuity in a Function Modeling Transition between States

A system's state is modeled by the function $$S(x)=\begin{cases} \frac{x^2-16}{x-4} & \text{if } x \

Medium

Displacement and Average Velocity from a Vector-Valued Function

A particle’s position is given by the vector-valued function $$p(t)=\langle 2*t, t^2 - 4*t + 3 \ran

Medium

Evaluating a Piecewise Function in a Vector Context

A vector-valued function is defined as $$\mathbf{p}(t)=\langle p_x(t),p_y(t) \rangle$$ where the hor

Medium

Evaluating Limits and Discontinuities in a Parameter-Dependent Function

For the function $$g(t)=\begin{cases} \frac{2*t^2 - 8}{t-2} & \text{if } t \neq 2, \\ 6 & \text{if }

Easy

Exponential Parametric Function and its Inverse

Consider the exponential function $$f(x)=e^{x}+2$$ defined for all real numbers. Analyze the functio

Medium

FRQ 2: Circular Motion and Parameterization

Consider a particle moving along a circular path represented by the parametric function $$f(t)=(x(t)

Medium

FRQ 6: Implicit Function to Parametric Representation

Consider the implicitly defined circle $$x^2+y^2-6*x+8*y+9=0$$.

Hard

FRQ 8: Vector Analysis - Dot Product and Angle

Given the vectors $$\textbf{u}=\langle3,4\rangle$$ and $$\textbf{v}=\langle-2,5\rangle$$, analyze th

Medium

FRQ 9: Vectors in Motion and Velocity

A particle's position is described by the vector-valued function $$p(t)=\langle2*t-1, t^2+1\rangle$$

Medium

FRQ 11: Matrix Inversion and Determinants

Let matrix $$A=\begin{bmatrix}3 & 4\\2 & -1\end{bmatrix}$$.

Medium

FRQ 13: Area Determined by a Matrix's Determinant

Vectors $$\textbf{v}=\langle4,3\rangle$$ and $$\textbf{w}=\langle-2,5\rangle$$ form a parallelogram.

Medium

FRQ 14: Linear Transformation and Rotation Matrix

Consider the rotation matrix $$R=\begin{bmatrix}\cos(t) & -\sin(t)\\ \sin(t) & \cos(t)\end{bmatrix}$

Medium

FRQ 16: Inverse of a Linear Transformation

Let the transformation be given by the matrix $$T=\begin{bmatrix}5 & 2\\3 & 1\end{bmatrix}$$.

Hard

Graphical and Algebraic Analysis of a Function with a Removable Discontinuity

Consider the function $$g(x)=\begin{cases} \frac{\sin(x) - \sin(0)}{x-0} & \text{if } x \neq 0, \\ 1

Easy

Implicit Function Analysis

Consider the implicitly defined equation $$x^2 + y^2 - 4*x + 6*y - 12 = 0$$. Answer the following:

Easy

Inverse Analysis of a Quadratic Function

Consider the function $$f(x)=x^2-4$$ defined for $$x\geq0$$. Analyze the function and its inverse.

Easy

Inverse Analysis of a Rational Function

Consider the function $$f(x)=\frac{2*x+3}{x-1}$$. Analyze the properties of this function and its in

Medium

Inverse and Determinant of a 2×2 Matrix

Consider the matrix $$C=\begin{pmatrix} 4 & 7 \\ 2 & 6 \end{pmatrix}$$. Answer the following parts.

Easy

Inverse of a 2×2 Matrix

Consider the matrix $$A=\begin{bmatrix}2 & 5\\ 3 & 7\end{bmatrix}$$.

Medium

Inverses and Solving a Matrix Equation

Given the matrix $$D = \begin{pmatrix} -2 & 5 \\ 1 & 3 \end{pmatrix}$$, answer the following:

Medium

Matrices as Models for Population Dynamics

A population of two species is modeled by the transition matrix $$P=\begin{pmatrix} 0.8 & 0.1 \\ 0.2

Hard

Matrix Methods for Solving Linear Systems

Solve the system of linear equations below using matrix methods: $$2x+3y=7$$ $$4x-y=5$$

Easy

Matrix Modeling of State Transitions

In a two-state system, the transition matrix is given by $$T=\begin{pmatrix}0.8 & 0.2 \\ 0.3 & 0.7\e

Extreme

Matrix Multiplication and Linear Transformations

Consider the matrices $$A= \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$$ and $$B= \begin{pmatrix}

Medium

Matrix Multiplication and Properties

Let $$A=\begin{pmatrix}1 & 2 \\ 3 & 4\end{pmatrix}$$ and $$B=\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmat

Hard

Matrix Multiplication Exploration

Let $$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$ and $$B = \begin{pmatrix} 0 & -1 \\ 5 & 2 \

Medium

Matrix Transformation in Graphics

In computer graphics, images are often transformed using matrices. Consider the transformation matri

Hard

Modeling Particle Trajectory with Parametric Equations

A particle’s motion is described by the parametric equations $$x(t)=3*t+1$$ and $$y(t)=-2*t^2+8*t-1$

Medium

Movement Analysis via Position Vectors

A particle is moving in the plane with its position given by the functions $$x(t)=2*t+1$$ and $$y(t)

Easy

Parameter Transition in a Piecewise-Defined Function

Consider the function $$g(t)=\begin{cases} \frac{t^3-1}{t-1} & \text{if } t \neq 1, \\ 5 & \text{if

Easy

Parametric Equations and Inverses

A curve is defined parametrically by $$x(t)=t+2$$ and $$y(t)=3*t-1$$.

Medium

Parametric Equations and Rates in a Biological Context

A bacteria colony in a Petri dish is observed to move in a periodic manner, with its position descri

Medium

Parametric Function Modeling and Discontinuity Analysis

A particle moves in the plane with its horizontal position described by the piecewise function $$x(t

Medium

Parametric Motion Analysis Using Tabulated Data

A particle moves in the plane following a parametric function. The following table represents the pa

Medium

Parametric Motion with Variable Rates

A particle moves in the plane with its motion described by $$x(t)=4*t-t^2$$ and $$y(t)=t^2-2*t$$.

Hard

Parametric Representation of a Line: Motion of a Car

A car travels in a straight line from point A = (2, -1) to point B = (10, 7) at a constant speed. (

Easy

Parametric Representation of a Parabola

Consider the parabola defined by $$y= 2*x^2 + 3$$. Answer the following:

Easy

Parametric Representation of an Ellipse

Consider the ellipse defined by $$\frac{x^2}{9}+\frac{y^2}{4}=1$$. A common parametrization uses $$x

Easy

Parametric Representation of an Implicit Curve

The equation $$x^2+y^2-6*x+8*y+9=0$$ defines a curve in the plane. Analyze this curve.

Easy

Parametric Table and Graph Analysis

Consider the parametric function $$f(t)= (x(t), y(t))$$ where $$x(t)= t^2$$ and $$y(t)= 2*t$$ for $$

Easy

Parametrically Defined Circular Motion

A circle of radius 5 is modeled by the parametric equations $$x(t)= 5\cos(t)$$ and $$y(t)= 5\sin(t)$

Easy

Parametrization of a Circle

The circle defined by $$x^2+y^2=25$$ represents all points at a distance of 5 from the origin.

Easy

Parametrization of a Parabola

Given the explicit function $$y = 2*x^2 + 3*x - 1$$, answer the following:

Medium

Parametrization of an Ellipse for a Racetrack

A racetrack is shaped like the ellipse given by $$\frac{(x-1)^2}{16}+\frac{(y+2)^2}{9}=1$$.

Medium

Parametrizing a Linear Path: Car Motion

A car moves along a straight line from point $$A=(1,2)$$ to point $$B=(7,8)$$.

Easy

Parametrizing a Parabola

A parabola is defined parametrically by $$x(t)=t$$ and $$y(t)=t^2$$.

Easy

Particle Motion from Parametric Equations

A particle moves in the plane with position functions $$x(t)=t^2-2*t$$ and $$y(t)=4*t-t^2$$, where $

Medium

Population Transition Matrix Analysis

A population dynamics model is represented by the transition matrix $$T=\begin{pmatrix}0.7 & 0.2 \\

Medium

Rate of Change Analysis in Parametric Motion

A particle’s movement is described by the parametric equations $$x(t)=t^3-6*t+4$$ and $$y(t)=2*t^2-t

Hard

Table-Driven Analysis of a Piecewise Defined Function

A researcher defines a function $$h(x)=\begin{cases} \frac{x^2 - 4}{x-2} & \text{if } x < 2, \\ x+3

Medium

Transition Matrix and State Changes

Consider a system with two states modeled by the transition matrix $$M = \begin{pmatrix} 0.7 & 0.2 \

Hard

Trigonometric Function Analysis

Consider the trigonometric function $$f(x)= 2*\tan(x - \frac{\pi}{6})$$. Without using a calculator,

Medium

Uniform Circular Motion

A car is moving along a circular track of radius 10 meters. Its motion is described by the parametri

Easy

Vector Analysis in Projectile Motion

A soccer ball is kicked so that its velocity vector is given by $$\mathbf{v}=\langle5, 7\rangle$$ (i

Easy

Vector Components and Magnitude

Given the vector $$\vec{v}=\langle 3, -4 \rangle$$:

Easy

Vector Operations in the Plane

Let $$\vec{u}= \langle 3, -2 \rangle$$ and $$\vec{v}= \langle -1, 4 \rangle$$. Perform the following

Easy

Vector Operations in the Plane

Let the vectors be given by $$\mathbf{u}=\langle 3,-4\rangle$$ and $$\mathbf{v}=\langle -2,5\rangle$

Easy

Vector Scalar Multiplication

Given the vector $$\mathbf{w} = \langle -2, 5 \rangle$$ and the scalar $$k = -3$$, answer the follow

Easy

Trusted by millions

Everyone is relying on Knowt, and we never let them down.

3M +Student & teacher users
5M +Study notes created
10M + Flashcards sets created
Victoria Buendia-Serrano
Victoria Buendia-SerranoCollege freshman
Knowt’s quiz and spaced repetition features have been a lifesaver. I’m going to Columbia now and studying with Knowt helped me get there!
Val
ValCollege sophomore
Knowt has been a lifesaver! The learn features in flashcards let me find time and make studying a little more digestible.
Sam Loos
Sam Loos12th grade
I used Knowt to study for my APUSH midterm and it saved my butt! The import from Quizlet feature helped a ton too. Slayed that test with an A!! 😻😻😻

Need to review before working on AP Precalculus FRQs?

We have over 5 million resources across various exams, and subjects to refer to at any point.

Browse top AP materials

We’ve found the best flashcards & notes on Knowt.

Tips from Former AP Students

FAQ

We thought you might have some questions...

Where can I find practice free response questions for the AP Precalculus exam?
The free response section of each AP exam varies slightly, so you’ll definitely want to practice that before stepping into that exam room. Here are some free places to find practice FRQs :
  • Of course, make sure to run through College Board's past FRQ questions!
  • Once you’re done with those go through all the questions in the AP PrecalculusFree Response Room. You can answer the question and have it grade you against the rubric so you know exactly where to improve.
  • Reddit it also a great place to find AP free response questions that other students may have access to.
How do I practice for AP AP Precalculus Exam FRQs?
Once you’re done reviewing your study guides, find and bookmark all the free response questions you can find. The question above has some good places to look! while you’re going through them, simulate exam conditions by setting a timer that matches the time allowed on the actual exam. Time management is going to help you answer the FRQs on the real exam concisely when you’re in that time crunch.
What are some tips for AP Precalculus free response questions?
Before you start writing out your response, take a few minutes to outline the key points you want to make sure to touch on. This may seem like a waste of time, but it’s very helpful in making sure your response effectively addresses all the parts of the question. Once you do your practice free response questions, compare them to scoring guidelines and sample responses to identify areas for improvement. When you do the free response practice on the AP Precalculus Free Response Room, there’s an option to let it grade your response against the rubric and tell you exactly what you need to study more.
How do I answer AP Precalculus free-response questions?
Answering AP Precalculus free response questions the right way is all about practice! As you go through the AP AP Precalculus Free Response Room, treat it like a real exam and approach it this way so you stay calm during the actual exam. When you first see the question, take some time to process exactly what it’s asking. Make sure to also read through all the sub-parts in the question and re-read the main prompt, making sure to circle and underline any key information. This will help you allocate your time properly and also make sure you are hitting all the parts of the question. Before you answer each question, note down the key points you want to hit and evidence you want to use (where applicable). Once you have the skeleton of your response, writing it out will be quick, plus you won’t make any silly mistake in a rush and forget something important.