AP Precalculus FRQ Room

Ace the free response questions on your AP Precalculus exam with practice FRQs graded by Kai. Choose your subject below.

Which subject are you taking?

Knowt can make mistakes. Consider checking important information.

Pick your exam

AP Precalculus Free Response Questions

The best way to get better at FRQs is practice. Browse through dozens of practice AP Precalculus FRQs to get ready for the big day.

  • View all (250)
  • Unit 1: Polynomial and Rational Functions (75)
  • Unit 2: Exponential and Logarithmic Functions (49)
  • Unit 3: Trigonometric and Polar Functions (58)
  • Unit 4: Functions Involving Parameters, Vectors, and Matrices (68)
Unit 1: Polynomial and Rational Functions

Absolute Extrema and Local Extrema of a Polynomial

Consider the polynomial function $$p(x)= (x-3)^2*(x+3)$$.

Medium

Analyzing a Rational Function with Asymptotes

Consider the rational function $$R(x)= \frac{(x-2)(x+3)}{(x-1)(x+4)}$$. Answer each part that follow

Medium

Analyzing Concavity in Polynomial Functions

A car’s displacement over time is modeled by the polynomial function $$f(x)= x^3 - 6*x^2 + 11*x - 6$

Medium

Analyzing End Behavior of a Polynomial

Consider the polynomial function $$f(x) = -2*x^4 + 3*x^3 - x + 5$$.

Easy

Analyzing End Behavior of Polynomial Functions

Consider the polynomial function $$P(x)= -2*x^4 + 3*x^3 - x + 5$$. Answer the following parts:

Easy

Average Rate of Change and Tangent Lines

For the function $$f(x)= x^3 - 6*x^2 + 9*x + 4$$, consider the relationship between secant (average

Medium

Average Rate of Change in a Quadratic Model

Let $$h(x)= x^2 - 4*x + 3$$ represent a model for a certain phenomenon. Calculate the average rate o

Easy

Binomial Theorem Expansion

Use the Binomial Theorem to expand the expression $$ (x + 2)^4 $$. Explain your steps in detail.

Easy

Carrying Capacity in Population Models

A rational function $$P(t) = \frac{50*t}{t + 10}$$ is used to model a population approaching its car

Easy

Comparative Analysis of Even and Odd Polynomial Functions

Consider the functions $$f(x)= x^4 - 4*x^2 + 3$$ and $$g(x)= x^3 - 2*x$$. Answer the following parts

Easy

Composite Function Analysis in Environmental Modeling

Environmental data shows the concentration (in mg/L) of a pollutant over time (in hours) as given in

Hard

Composite Function Transformations

Consider the polynomial function $$f(x)= x^2-4$$. A new function is defined by $$g(x)= \ln(|f(x)+5|)

Hard

Composite Functions and Inverses

Let $$f(x)= 3*(x-2)^2+1$$.

Medium

Constructing a Piecewise Function from Data

A company’s production cost function changes slopes at a production level of 100 units. The cost (in

Easy

Constructing a Rational Function Model with Asymptotic Behavior

An engineer is modeling the concentration of a pollutant over time with a rational function. The fun

Hard

Cubic Function Inverse Analysis

Consider the cubic function $$f(x) = x^3 - 6*x^2 + 9*x$$. Answer the following questions related to

Medium

Determining Degree from Discrete Data

Below is a table representing the output values of a polynomial function for equally-spaced input va

Medium

Determining Function Behavior from a Data Table

A function $$f(x)$$ is represented by the table below: | x | f(x) | |-----|------| | -3 | 10 |

Easy

Determining Polynomial Degree from Finite Differences

A function $$f(x)$$ is defined on equally spaced values of $$x$$, with the following data: | x | f(

Easy

Determining the Degree of a Polynomial via Differences

A function $$f(x)$$ is defined on equally spaced inputs and the following table gives selected value

Easy

Discontinuities in a Rational Model Function

Consider the function $$p(x)=\frac{(x-3)(x+1)}{x-3}$$, defined for all $$x$$ except when $$x=3$$. Ad

Easy

End Behavior of a Quartic Polynomial

Consider the quartic polynomial function $$f(x) = -3*x^4 + 5*x^3 - 2*x^2 + x - 7$$. Analyze the end

Easy

Estimating Polynomial Degree from Finite Differences

The following table shows the values of a function $$f(x)$$ at equally spaced values of $$x$$: | x

Easy

Evaluating Limits and Discontinuities in a Rational Function

Consider the rational function $$f(x)=\frac{x^2-4}{x-2}$$, which is defined for all real $$x$$ excep

Medium

Evaluating Limits Involving Rational Expressions with Asymptotic Behavior

Consider the function $$f(x)=\frac{2*x^2-3*x-5}{x^2-1}$$. Answer the following:

Hard

Expanding a Binomial: Application of the Binomial Theorem

Expand the expression $$ (x+2)^5 $$ using the Binomial Theorem and answer the following:

Easy

Expansion Using the Binomial Theorem in Forecasting

In a business forecast, the expression $$(x + 5)^4$$ is used to model compound factors affecting rev

Easy

Exploring Domain Restrictions via Inverse Functions in a Quadratic Model

Consider the quadratic function $$f(x)= -x^2 + 6*x - 8$$. Answer the following questions regarding i

Medium

Exploring Polynomial Function Behavior

Consider the polynomial function $$f(x)= 2*(x-1)^2*(x+2)$$, which is used to model a physical trajec

Easy

Exploring Symmetry in Polynomial Functions

Let $$f(x)= x^4-5*x^2+4$$.

Easy

Exponential Equations and Logarithm Applications in Decay Models

A radioactive substance decays according to the model $$A(t)= A_0*e^{-0.3*t}$$. A researcher analyze

Easy

Factoring and Dividing Polynomial Functions

Engineers are analyzing the stress on a structural beam, modeled by the polynomial function $$P(x)=

Hard

Factoring and Zero Multiplicity

Consider the polynomial $$p(x)= (x - 1)^2*(x+2)^3*(x-4)$$. Answer the following parts.

Easy

Finding and Interpreting Inflection Points

Consider the polynomial function $$f(x)= x^3 - 6*x^2 + 9*x + 1$$. Answer the following parts.

Medium

Function Simplification and Graph Analysis

Consider the function $$h(x)= \frac{x^2 - 4}{x-2}$$. Answer the following parts.

Easy

Function Transformations and Parent Functions

The parent function is $$f(x)= x^2$$. Consider the transformed function $$g(x)= -3*(x-4)^2 + 5$$. An

Easy

Geometric Series Model in Area Calculations

An architect designs a sequence of rectangles such that each rectangle's area is 0.8 times the area

Easy

Graph Interpretation and Log Transformation

An experiment records the reaction time R (in seconds) of an enzyme as a power function of substrate

Medium

Graphical Analysis of Inverse Function for a Linear Transformation

Consider the function $$f(x)=4*(x+1)-5$$. Answer the following questions regarding the transformatio

Easy

Intersection of Functions in Supply and Demand

Consider two functions that model supply and demand in a market. The supply function is given by $$f

Medium

Inverse Analysis Involving Multiple Transformations

Consider the function $$f(x)= 5 - 2*(x+3)^2$$. Answer the following questions regarding its inverse

Medium

Inverse Analysis of a Modified Rational Function

Consider the function $$f(x)=\frac{x^2+1}{x-1}$$. Answer the following questions concerning its inve

Extreme

Inverse Analysis of a Polynomial Function with Multiple Turning Points

Consider the function $$f(x)= (x-2)^3 - 3*(x-2) + 1$$. Answer the following about its invertibility

Hard

Inverse Analysis of a Reciprocal Function

Consider the function $$f(x)= \frac{1}{x+2} + 3$$. Answer the following questions regarding its inve

Medium

Inverse Analysis of a Shifted Cubic Function

Consider the function $$f(x)= (x-1)^3 + 4$$. Answer the following questions regarding its inverse.

Easy

Inverse Analysis of an Even Function with Domain Restriction

Consider the function $$f(x)=x^2$$ defined on the restricted domain $$x \ge 0$$. Answer the followin

Easy

Investigation of Refund Policy via Piecewise Continuous Functions

A retail store's refund policy is modeled by $$ R(x)=\begin{cases} 10-x & \text{for } x<5, \\ a*x+b

Easy

Local and Global Extrema in a Polynomial Function

Consider the polynomial function $$f(x)= x^3 - 6*x^2 + 9*x + 15$$. Determine its local and global ex

Hard

Logarithmic and Exponential Equations with Rational Functions

A process is modeled by the function $$F(x)= \frac{3*e^{2*x} - 5}{e^{2*x}+1}$$, where x is measured

Extreme

Model Interpretation: End Behavior and Asymptotic Analysis

A chemical reaction's saturation level is modeled by the rational function $$S(t)= \frac{10*t+5}{t+3

Medium

Modeling Inverse Variation: A Rational Approach

A variable $$y$$ is inversely proportional to $$x$$. Data indicates that when $$x=4$$, $$y=2$$, and

Easy

Modeling Population Growth with a Polynomial Function

A population of a certain species in a controlled habitat is modeled by the cubic function $$P(t)= -

Medium

Modeling Vibration Data with a Cubic Function

A sensor records vibration data over time, and the data appears to be modeled by a cubic function of

Hard

Modeling with Inverse Variation: A Rational Function

A physics experiment models the intensity $$I$$ of light as inversely proportional to the square of

Easy

Parameter Identification in a Rational Function Model

A rational function modeling a certain phenomenon is given by $$r(x)= \frac{k*(x - 2)}{x+3}$$, where

Easy

Piecewise Function Construction for Utility Rates

A utility company charges for electricity according to the following scheme: For usage $$u$$ (in kWh

Easy

Piecewise Polynomial and Rational Function Analysis

A traffic flow model is described by the piecewise function $$f(t)= \begin{cases} a*t^2+b*t+c & \tex

Hard

Polynomial End Behavior and Zeros Analysis

A polynomial function is given by $$f(x)= 2*x^4 - 3*x^3 - 12*x^2$$. This function models a physical

Medium

Polynomial Interpolation and Finite Differences

A quadratic function is used to model the height of a projectile. The following table gives the heig

Easy

Predator-Prey Dynamics as a Rational Function

An ecologist models the ratio of predator to prey populations with the rational function $$P(x) = \f

Medium

Rational Function Analysis for Signal Processing

A signal processing system is modeled by the rational function $$R(x)= \frac{2*x^2 - 3*x - 5}{x^2 -

Medium

Rational Function Asymptotes and Holes

Consider the rational function $$r(x)=\frac{x^2 - 4}{x^2 - x - 6}$$. Analyze the function according

Medium

Rational Function: Machine Efficiency Ratios

A machine's efficiency is modeled by the rational function $$E(x) = \frac{x^2 - 9}{x^2 - 4*x + 3}$$,

Medium

Rational Inequalities Analysis

Solve the inequality $$\frac{x^2-4}{x+1} \ge 0$$ and represent the solution on a number line.

Medium

Rational Inequalities and Test Intervals

Solve the inequality $$\frac{x-3}{(x+2)(x-1)} < 0$$. Answer the following parts.

Medium

Real-World Inverse Function: Temperature Conversion

The function $$f(x)= \frac{9}{5}*x + 32$$ converts a temperature in degrees Celsius to degrees Fahre

Easy

Real-World Modeling: Population Estimation

A biologist models the population of a species over time $$t$$ (in years) with the polynomial functi

Medium

Regression Model Selection for Experimental Data

Experimental data was collected, and the following table represents the relationship between a contr

Extreme

Return to a Rational Expression under Transformation

Consider the function $$f(x)=\frac{(x-2)(x+3)}{(x-2)(x-5)}$$, defined for $$x\neq2,5$$. Answer the f

Hard

Revenue Modeling with a Polynomial Function

A small theater's revenue from ticket sales is modeled by the polynomial function $$R(x)= -0.5*x^3 +

Medium

Roller Coaster Curve Analysis

A roller coaster's vertical profile is modeled by the polynomial function $$f(x)= -0.05*x^3 + 1.2*x^

Medium

Solving a Polynomial Inequality

Solve the inequality $$x^3 - 4*x^2 + x + 6 \ge 0$$ and justify your solution.

Medium

Transformation in Composite Functions

Let the parent function be $$f(x)= x^2$$ and consider the composite transformation given by $$g(x)=

Easy

Zeros and Complex Conjugates in Polynomial Functions

A polynomial function of degree 4 is known to have real zeros at $$x=1$$ and $$x=-2$$, and two non-r

Easy

Zeros and Factorization Analysis

A fourth-degree polynomial $$Q(x)$$ is known to have zeros at $$x=-3$$ (with multiplicity 2), $$x=1$

Medium
Unit 2: Exponential and Logarithmic Functions

Analyzing a Logarithmic Function

Consider the logarithmic function $$f(x)= \log_{3}(x-2) + 1$$.

Medium

Analyzing Exponential Function Behavior

Consider the function \(f(x)=5\cdot e^{-0.3\cdot x}+2\). (a) Determine the horizontal asymptote of

Easy

Analyzing Exponential Function Behavior from a Graph

An exponential function is depicted in the graph provided. Analyze the key features of the function.

Easy

Analyzing Social Media Popularity with Logarithmic Growth

A social media analyst is studying the early-stage growth of a new account's followers. Initially, t

Extreme

Arithmetic Savings Plan

A person decides to save money every month, starting with an initial deposit of $$50$$ dollars, with

Easy

Arithmetic Sequence in Savings

A student saves money every month and deposits a fixed additional amount each month, so that her sav

Easy

Bacterial Growth Model

In a laboratory experiment, a bacteria colony doubles every 3 hours. The initial count is $$500$$ ba

Medium

Bacterial Growth Model and Inverse Function

A bacterial culture grows according to the function $$f(x)=500*2^(x/3)$$, where $$x$$ is time in hou

Medium

Bacterial Growth Modeling

A biologist is studying a rapidly growing bacterial culture. The number of bacteria at time $$t$$ (i

Medium

Bacterial Population Growth Model

A certain bacterium population doubles every 3 hours. At time $$t = 0$$ hours the population is $$50

Medium

Composite Function Analysis: Identity and Inverses

Let $$f(x)= 2^x$$ and $$g(x)= \log_2(x)$$.

Medium

Composite Function and Its Inverse

Let \(f(x)=3\cdot2^{x}\) and \(g(x)=x-1\). Consider the composite function \(h(x)=f(g(x))\). (a) Wr

Medium

Compound Interest and Exponential Equations

An investment account is compounded continuously with an initial balance of $$1000$$ and an annual i

Medium

Compound Interest and Financial Growth

An investment account earns compound interest annually. An initial deposit of $$P = 1000$$ dollars i

Easy

Domain, Range, and Inversion of Logarithmic Functions

Consider the logarithmic function \(f(x)=\log_{2}(x-3)\). (a) Determine the domain and range of \(f

Easy

Earthquake Magnitude and Energy Release

Earthquake energy is modeled by the equation $$E = k\cdot 10^{1.5M}$$, where $$E$$ is the energy rel

Medium

Economic Inflation Model Analysis

An economist proposes a model for the inflation rate given by R(t) = A · ln(B*t + C) + D, where R(t)

Extreme

Environmental Pollution Decay

The concentration of a pollutant in a lake decays exponentially due to natural processes. The concen

Medium

Exploring Logarithmic Scales: pH and Hydrogen Ion Concentration

In chemistry, the pH of a solution is defined by the relation $$pH = -\log([H^+])$$, where $$[H^+]$$

Medium

Exploring the Properties of Exponential Functions

Analyze the exponential function $$f(x)= 4 * 2^x$$.

Easy

Exponential Decay and Half-Life

A radioactive substance decays according to an exponential decay function. The substance initially w

Medium

Exponential Decay: Modeling Half-Life

A radioactive substance decays with a half-life of 5 years. At \(t = 10\) years, the mass of the sub

Hard

Exponential Function Transformation

An exponential function is given by $$f(x) = 2 \cdot 3^x$$. Analyze the effects of various transform

Medium

Finding the Inverse of an Exponential Function

Given the exponential function $$f(x)= 4\cdot e^{0.5*x} - 3,$$ find the inverse function $$f^{-1}(

Medium

Fitting a Logarithmic Model to Sales Data

A company observes that its sales revenue (in thousands of dollars) based on advertising spend (in t

Hard

Fractal Pattern Growth

A fractal pattern is generated such that after its initial creation, each iteration adds an area tha

Medium

Geometric Investment Growth

An investor places $$1000$$ dollars into an account that grows following a geometric sequence model.

Medium

Geometric Sequence Construction

Consider a geometric sequence where the first term is $$g_0 = 3$$ and the second term is $$g_1 = 6$$

Easy

Graphical Analysis of Inverse Functions

Given the exponential function f(x) = 2ˣ + 3, analyze its inverse function.

Medium

Inverse of a Composite Function

Let $$f(x)= e^x$$ and $$g(x)= \ln(x) + 3$$.

Hard

Loan Payment and Arithmetico-Geometric Sequence

A borrower takes a loan of $$10,000$$ dollars. The loan accrues a monthly interest of 1% and the bor

Hard

Log-Exponential Hybrid Function and Its Inverse

Consider the function $$f(x)=\log_3(8*3^(x)-5)$$. Analyze its domain, prove its one-to-one property,

Extreme

Logarithmic Function Analysis

Consider the logarithmic function $$f(x) = 3 + 2·log₅(x - 1)$$.

Medium

Model Validation and Error Analysis in Exponential Trends

During a chemical reaction, a set of experimental data appears to follow an exponential trend when p

Hard

pH and Logarithmic Functions

The pH of a solution is defined by $$pH = -\log_{10}[H^+]$$, where $$[H^+]$$ represents the hydrogen

Medium

pH Measurement and Inversion

A researcher uses the function $$f(x)=-\log_{10}(x)+7$$ to measure the pH of a solution, where $$x$$

Easy

Piecewise Exponential and Logarithmic Function Discontinuities

Consider the function defined by $$ f(x)=\begin{cases} 2^x + 1, & x < 3,\\ 5, & x = 3,

Hard

Piecewise Exponential-Log Function in Light Intensity Modeling

A scientist models the intensity of light as a function of distance using a piecewise function: $$

Hard

Population Demographics Model

A small town’s population (measured in hundreds) is recorded over several time intervals. The data i

Medium

Radioactive Decay Modeling

A radioactive substance decays with a half-life of $$5$$ years. A sample has an initial mass of $$80

Medium

Semi-Log Plot Data Analysis

A set of experimental data representing bacterial concentration (in CFU/mL) over time (in days) is g

Medium

Shifted Exponential Function and Its Inverse

Consider the function $$f(x)=7-4*2^(x-3)$$. Determine its one-to-one nature, find its inverse functi

Hard

Temperature Cooling Model

An object cooling in a room follows Newton’s Law of Cooling. The temperature of the object is modele

Medium

Temperature Decay Modeled by a Logarithmic Function

In an experiment, the temperature (in degrees Celsius) of an object decreases over time according to

Medium

Transformation Effects on Exponential Functions

Consider the function $$f(x) = 3 \cdot 2^x$$, which is transformed to $$g(x) = 3 \cdot 2^{(x+1)} - 4

Medium

Transformations of Exponential Functions

Consider the exponential function $$f(x) = 3 \cdot 2^x$$. This function is transformed to produce $$

Medium

Translated Exponential Function and Its Inverse

Consider the function $$f(x)=5*2^(x+3)-8$$. Analyze its properties by confirming its one-to-one natu

Easy

Validating the Negative Exponent Property

Demonstrate the negative exponent property using the expression $$b^{-3}$$.

Easy

Wildlife Population Decline

A wildlife population declines by 15% each year, forming a geometric sequence.

Easy
Unit 3: Trigonometric and Polar Functions

Amplitude and Period Transformations

A Ferris wheel ride is modeled by a sinusoidal function. The ride has a maximum height of 75 ft and

Medium

Analysis of a Bridge Suspension Vibration Pattern

After an impact, engineers recorded the vertical displacement (in meters) of a suspension bridge, mo

Medium

Analysis of Rose Curves

A polar curve is given by the equation $$r=4*\cos(3*θ)$$ which represents a rose curve. Analyze the

Medium

Analyzing a Rose Curve

Consider the polar equation $$r=3\,\sin(2\theta)$$.

Medium

Analyzing Phase Shifts in Sinusoidal Functions

Investigate the function $$y=\sin\Big(2*(x-\frac{\pi}{3})\Big)+0.5$$ by identifying its transformati

Medium

Analyzing Sinusoidal Variation in Daylight Hours

A researcher models daylight hours over a year with the function $$D(t) = 5 + 2.5*\sin((2\pi/365)*(t

Medium

Calculating the Area Enclosed by a Polar Curve

Consider the polar curve $$r=2*\cos(θ)$$. Without performing any integral calculations, use symmetry

Hard

Cardioid Polar Graphs

Consider the cardioid given by the polar equation $$r=1+\cos(\theta)$$.

Medium

Comparing Sinusoidal Function Models

Two models for daily illumination intensity are given by: $$I_1(t)=6*\sin\left(\frac{\pi}{12}(t-4)\r

Medium

Comparing Sinusoidal Functions

Consider the functions $$f(x)=\sin(x)$$ and $$g(x)=\cos\Bigl(x-\frac{\pi}{2}\Bigr)$$.

Easy

Concavity in the Sine Function

Consider the function $$h(x) = \sin(x)$$ defined on the interval $$[0, 2\pi]$$.

Medium

Conversion Between Rectangular and Polar Coordinates

Convert the given points between rectangular and polar coordinate systems and discuss the relationsh

Easy

Conversion Between Rectangular and Polar Coordinates

A point A in the Cartesian plane is given by $$(-3, 3\sqrt{3})$$.

Hard

Daily Temperature Fluctuations

The table below shows the recorded temperature (in $$^{\circ}\text{F}$$) at various times during the

Easy

Daylight Variation Model

A company models the variation in daylight hours over a year using the function $$D(t) = 10*\sin\Big

Medium

Exploring a Limacon

Consider the polar equation $$r=2+3\,\cos(\theta)$$.

Hard

Exploring Inverse Trigonometric Functions

Consider the inverse sine function $$\arcsin(x)$$, defined for \(x\in[-1,1]\).

Easy

Exploring Rates of Change in Polar Functions

Given the polar function $$r(\theta) = 2 + \sin(\theta)$$, answer the following:

Hard

Extracting Sinusoidal Parameters from Data

The function $$f(x)=a\sin[b(x-c)]+d$$ models periodic data, with the following values provided: | x

Easy

Graph Analysis of a Polar Function

The polar function $$r=4+3\sin(\theta)$$ is given, with the following data: | \(\theta\) (radians)

Hard

Graph Interpretation from Tabulated Periodic Data

A study recorded the oscillation of a pendulum over time. Data is provided in the table below showin

Medium

Graphical Reflection of Trigonometric Functions and Their Inverses

Consider the sine function and its inverse. The graph of an inverse function is the reflection of th

Easy

Graphing a Rose Curve

Consider the polar function $$r=4\cos(3\theta)$$ and analyze its properties.

Medium

Graphing the Tangent Function and Analyzing Asymptotes

Consider the function $$y = \tan(x)$$. Answer the following:

Medium

Identity Verification

Verify the following trigonometric identity using the sum formula for sine: $$\sin(\alpha+\beta) = \

Easy

Interpreting a Sinusoidal Graph

The graph provided displays a function of the form $$g(\theta)=a\sin[b(\theta-c)]+d$$. Use the graph

Medium

Inverse Trigonometric Function Analysis

Consider the function $$f(x)=\sin(x)$$ defined on the interval $$\left[-\frac{\pi}{2},\frac{\pi}{2}\

Easy

Inverse Trigonometric Function Analysis

Consider the function $$f(x) = 2*\sin(x)$$.

Medium

Inverse Trigonometric Functions

Examine the inverse relationships for trigonometric functions over appropriate restricted domains.

Medium

Modeling Daylight Variation

A coastal city records its daylight hours over the year. A sinusoidal model of the form $$D(t)=A*\si

Medium

Modeling Seasonal Temperature Data with Sinusoidal Functions

A sinusoidal pattern is observed in average monthly temperatures. Refer to the provided temperature

Medium

Modeling Tides with Sinusoidal Functions

Tidal heights at a coastal location are modeled by the function $$H(t)=2\,\sin\Bigl(\frac{\pi}{6}(t-

Easy

Pendulum Motion and Periodic Phenomena

A pendulum's angular displacement from the vertical is observed to follow a periodic pattern. Refer

Medium

Periodic Phenomena in Weather Patterns

A city's average daily temperature over the course of a year is modeled by a sinusoidal function. Th

Medium

Periodic Phenomena: Seasonal Daylight Variation

A scientist is studying the variation in daylight hours over the course of a year in a northern regi

Medium

Periodic Temperature Variation Model

A town's temperature is modeled by the function $$T(t)=10*\cos(\frac{\pi}{12}*(t-6))+20$$, where t r

Easy

Piecewise Trigonometric Function and Continuity Analysis

Consider the piecewise defined function $$f(\theta)=\begin{cases}\frac{\sin(\theta)}{\theta} & ,\ \t

Medium

Polar Circle Graph

Consider the polar equation $$r = 4$$ which represents a circle.

Easy

Polar Coordinates Conversion

Convert between Cartesian and polar coordinates and analyze related polar equations.

Medium

Polar Coordinates: Converting and Graphing

Given the rectangular coordinate point $$(3, -3\sqrt{3})$$, convert and analyze its polar representa

Medium

Polar Interpretation of Periodic Phenomena

A meteorologist models wind speed variations with direction over time using a polar function of the

Hard

Polar to Cartesian Conversion for a Circle

Consider the polar equation $$r=6\cos(\theta)$$.

Medium

Proof and Application of Trigonometric Sum Identities

Trigonometric sum identities are a powerful tool in analyzing periodic phenomena.

Extreme

Rewriting and Graphing a Composite Trigonometric Function

Given the function $$f(x)=\cos(x)+\sin(x)$$, transform it into the form $$R*\cos(x-\phi)$$.

Hard

Rose Curve in Polar Coordinates

The polar function $$r(\theta) = 4*\cos(3*\theta)$$ represents a rose curve.

Hard

Seasonal Demand Modeling

A company's product demand follows a seasonal pattern modeled by $$D(t)=500+50\cos\left(\frac{2\pi}{

Medium

Sine and Cosine Graph Transformations

Consider the functions $$f(\theta)=\sin(\theta)$$ and $$g(\theta)=\sin(\theta+\frac{\pi}{3})$$, whic

Easy

Sinusoidal Combination

Let $$f(x) = 3*\sin(x) + 2*\cos(x)$$.

Hard

Solving a Basic Trigonometric Equation

Solve the trigonometric equation $$2\cos(x)-1=0$$ for $$0 \le x < 2\pi$$.

Easy

Solving a Trigonometric Equation

Solve the trigonometric equation $$2*\cos(\theta) - 1 = 0$$ for $$\theta$$ in the interval $$[0, 2\p

Medium

Solving a Trigonometric Equation

Solve the trigonometric equation $$2*\sin(\theta)+\sqrt{3}=0$$ for all solutions in the interval $$[

Easy

Solving a Trigonometric Equation with Sum and Difference Identities

Solve the equation $$\sin\left(x+\frac{\pi}{6}\right)=\cos(x)$$ for $$0\le x<2\pi$$.

Hard

Solving Trigonometric Equations

Solve the trigonometric equation $$\sin(\theta) + \sqrt{3}*\cos(\theta)=1$$.

Hard

Solving Trigonometric Equations in a Specified Interval

Solve the given trigonometric equations within specified intervals and explain the underlying reason

Easy

Special Triangles and Unit Circle Coordinates

Consider the actual geometric constructions of the special triangles used within the unit circle, sp

Easy

Transformations of Sinusoidal Functions

Consider the function $$y = 3*\sin(2*(x - \pi/4)) - 1$$. Answer the following:

Medium

Verification and Application of Trigonometric Identities

Consider the sine addition identity $$\sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\b

Easy

Verifying a Trigonometric Identity

Demonstrate that the identity $$\sin^2(x)+\cos^2(x)=1$$ holds for all real numbers \(x\).

Easy
Unit 4: Functions Involving Parameters, Vectors, and Matrices

Analysis of a Particle's Parametric Path

A particle moves in the plane with parametric equations $$x(t)=t^2 - 3*t + 2$$ and $$y(t)=4*t - t^2$

Medium

Analysis of a Vector-Valued Position Function

Consider the vector-valued function $$\mathbf{p}(t) = \langle 2*t + 1, 3*t - 2 \rangle$$ representin

Easy

Analysis of Vector Directions and Transformations

Given the vectors $$\mathbf{a}=\langle -1,2\rangle$$ and $$\mathbf{b}=\langle 4,3\rangle$$, perform

Hard

Analyzing a Piecewise Function Representing a Linear Transformation

Let $$T(x)=\begin{cases} \frac{2x-4}{x-2} & \text{if } x \neq 2, \\ 3 & \text{if } x=2 \end{cases}$$

Easy

Area of a Parallelogram Using Determinants

Given the vectors $$u=\langle 3, 5 \rangle$$ and $$v=\langle -2, 4 \rangle$$: (a) Write the 2×2 mat

Easy

Complex Parametric and Matrix Analysis in Planar Motion

A particle moves in the plane according to the parametric equations $$x(t)=3\cos(t)+2*t$$ and $$y(t)

Extreme

Composite Transformations in the Plane

Consider two linear transformations in $$\mathbb{R}^2$$: a rotation by 90° counterclockwise and a re

Easy

Composition of Linear Transformations

Given matrices $$A=\begin{pmatrix}2 & 0 \\ 0 & 3\end{pmatrix}$$ and $$B=\begin{pmatrix}0 & 1 \\ 1 &

Hard

Composition of Linear Transformations

Let $$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$ and $$B = \begin{pmatrix} 3 & 0 \\ 1 & 2 \e

Medium

Composition of Linear Transformations

Let two linear transformations in \(\mathbb{R}^2\) be represented by the matrices $$E=\begin{pmatrix

Hard

Composition of Transformations and Inverses

Let $$A=\begin{bmatrix}2 & 3\\ 1 & 4\end{bmatrix}$$ and consider the linear transformation $$L(\vec{

Extreme

Computing Average Rate of Change in Parametric Functions

Consider a particle moving with its position given by $$x(t)=t^2 - 4*t + 3$$ and $$y(t)=2*t + 1$$. A

Medium

Converting an Explicit Function to Parametric Form

The function $$f(x)=x^3-3*x+2$$ is given explicitly. One way to parametrize this function is by lett

Easy

Determinant and Inverse Calculation

Given the matrix $$C = \begin{pmatrix} 4 & 7 \\ 2 & 6 \end{pmatrix}$$, answer the following:

Easy

Determinant Applications in Area Computation

Vectors $$\mathbf{u}=\langle 5,2\rangle$$ and $$\mathbf{v}=\langle 1,4\rangle$$ form adjacent sides

Easy

Estimating a Definite Integral with a Table

The function x(t) represents the distance traveled (in meters) by an object over time, with the foll

Medium

Evaluating a Piecewise Function in a Vector Context

A vector-valued function is defined as $$\mathbf{p}(t)=\langle p_x(t),p_y(t) \rangle$$ where the hor

Medium

Evaluating Limits in a Parametrically Defined Motion Scenario

A particle’s motion is given by the parametric equations: $$x(t)=\begin{cases} \frac{t^2-9}{t-3} & \

Medium

Ferris Wheel Motion

A Ferris wheel rotates counterclockwise with a center at $$ (2, 3) $$ and a radius of $$5$$. The whe

Medium

Finding Angle Between Vectors

Given vectors $$\mathbf{a}=\langle 1,2 \rangle$$ and $$\mathbf{b}=\langle 3,4 \rangle$$, determine t

Medium

FRQ 6: Implicit Function to Parametric Representation

Consider the implicitly defined circle $$x^2+y^2-6*x+8*y+9=0$$.

Hard

FRQ 8: Vector Analysis - Dot Product and Angle

Given the vectors $$\textbf{u}=\langle3,4\rangle$$ and $$\textbf{v}=\langle-2,5\rangle$$, analyze th

Medium

FRQ 9: Vectors in Motion and Velocity

A particle's position is described by the vector-valued function $$p(t)=\langle2*t-1, t^2+1\rangle$$

Medium

FRQ 10: Unit Vectors and Direction

Consider the vector $$\textbf{w}=\langle -5, 12 \rangle$$.

Easy

FRQ 17: Matrix Representation of a Reflection

A reflection about the line \(y=x\) is given by the matrix $$Q=\begin{bmatrix}0 & 1\\1 & 0\end{bmatr

Easy

FRQ 18: Dynamic Systems and Transition Matrices

Consider a transition matrix modeling state changes given by $$M=\begin{bmatrix}0.7 & 0.3\\0.4 & 0.6

Hard

FRQ 19: Parametric Functions and Matrix Transformation

A particle's motion is given by the parametric equations $$f(t)=(t, t^2)$$ for $$t\in[0,2]$$. A line

Hard

FRQ 20: Advanced Parametric and Matrix Modeling

A particle moves according to $$f(t)=(3*\cos(t)-t, 3*\sin(t)+2)$$ for time t. A transformation is ap

Extreme

Graphical and Algebraic Analysis of a Function with a Removable Discontinuity

Consider the function $$g(x)=\begin{cases} \frac{\sin(x) - \sin(0)}{x-0} & \text{if } x \neq 0, \\ 1

Easy

Growth Models: Exponential and Logistic Equations

Consider a population growth model of the form $$P(t)= P_{0}*e^{r*t}$$ and a logistic model given by

Medium

Inverse and Determinant of a 2×2 Matrix

Consider the matrix $$C=\begin{pmatrix} 4 & 7 \\ 2 & 6 \end{pmatrix}$$. Answer the following parts.

Easy

Inverse Matrix with a Parameter

Consider the 2×2 matrix $$A=\begin{pmatrix} a & 2 \\ 3 & 4 \end{pmatrix}.$$ (a) Express the deter

Medium

Inverses and Solving a Matrix Equation

Given the matrix $$D = \begin{pmatrix} -2 & 5 \\ 1 & 3 \end{pmatrix}$$, answer the following:

Medium

Investigating Inverse Transformations in the Plane

Consider the linear transformation defined by $$L(\mathbf{v})=\begin{pmatrix}2 & 1\\3 & 4\end{pmatri

Medium

Linear Transformation and its Effect on Geometric Shapes

A linear transformation in \(\mathbb{R}^2\) is represented by the matrix $$M=\begin{pmatrix} 2 & 0 \

Easy

Linear Transformation Evaluation

Given the transformation matrix $$T = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$, answer the fo

Hard

Linear Transformations via Matrices

A linear transformation \(L\) in \(\mathbb{R}^2\) is defined by $$L(x,y)=(3*x- y, 2*x+4*y)$$. This t

Medium

Logarithmic and Exponential Parametric Functions

A particle’s position is defined by the parametric equations $$x(t)= \ln(1+t)$$ and $$y(t)= e^{1-t}$

Medium

Matrix Applications in State Transitions

In a system representing transitions between two states, the following transition matrix is used: $

Hard

Matrix Methods for Solving Linear Systems

Solve the system of linear equations below using matrix methods: $$2x+3y=7$$ $$4x-y=5$$

Easy

Matrix Modeling of Department Transitions

A company’s employee transitions between two departments are modeled by the matrix $$M=\begin{pmatri

Extreme

Matrix Multiplication Exploration

Let $$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$ and $$B = \begin{pmatrix} 0 & -1 \\ 5 & 2 \

Medium

Matrix Transformation of a Vector

Let the transformation matrix be $$A=\begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix},$$ and let the

Medium

Parabolic Motion in a Parametric Framework

A projectile is launched with its motion described by the equations $$x(t)=4*t$$ and $$y(t)=-4.9*t^2

Medium

Parametric Curve with Logarithmic and Exponential Components

A curve is described by the parametric equations $$x(t)= t + \ln(t)$$ and $$y(t)= e^{t} - 3$$ for t

Medium

Parametric Equations and Inverses

A curve is defined parametrically by $$x(t)=t+2$$ and $$y(t)=3*t-1$$.

Medium

Parametric Function Modeling and Discontinuity Analysis

A particle moves in the plane with its horizontal position described by the piecewise function $$x(t

Medium

Parametric Representation of a Hyperbola

For the hyperbola given by $$\frac{x^2}{9}-\frac{y^2}{4}=1$$:

Hard

Parametric Representation of a Parabola

Consider the parabola defined by $$y= 2*x^2 + 3$$. Answer the following:

Easy

Parametric Representation of a Parabola

A parabola is given by the equation $$y=x^2-2*x+1$$. A parametric representation for this parabola i

Easy

Parametric Representation of an Implicitly Defined Function

Consider the implicitly defined curve $$x^2+y^2=16$$. A common parametric representation is given by

Easy

Parametrization of an Ellipse

Consider the ellipse defined by $$\frac{(x-2)^2}{9} + \frac{(y+1)^2}{4} = 1$$. Answer the following:

Easy

Parametrization of an Ellipse for a Racetrack

A racetrack is shaped like the ellipse given by $$\frac{(x-1)^2}{16}+\frac{(y+2)^2}{9}=1$$.

Medium

Particle Motion from Parametric Equations

A particle moves in the plane with position functions $$x(t)=t^2-2*t$$ and $$y(t)=4*t-t^2$$, where $

Medium

Position and Velocity Vectors

For a particle with position $$\mathbf{p}(t)=\langle2*t+1, 3*t-2\rangle$$, where $$t$$ is in seconds

Easy

Projectile Motion: Parabolic Path

A projectile is launched so that its motion is modeled by the parametric equations $$x(t)=t$$ and $

Medium

Resolving Discontinuities in an Elliptical Parameterization

An ellipse is parameterized by the following equations: $$x(\theta)=\begin{cases} 5\cos(\theta) & \t

Easy

Transition Matrices in Dynamic Models

A system with two states is modeled by the transition matrix $$T=\begin{bmatrix}0.8 & 0.3\\ 0.2 & 0.

Hard

Transition Matrix and State Changes

Consider a system with two states modeled by the transition matrix $$M = \begin{pmatrix} 0.7 & 0.2 \

Hard

Transition Matrix in Markov Chains

A system transitions between two states according to the matrix $$M= \begin{pmatrix} 0.7 & 0.3 \\ 0.

Medium

Trigonometric Function Analysis

Consider the trigonometric function $$f(x)= 2*\tan(x - \frac{\pi}{6})$$. Without using a calculator,

Medium

Uniform Circular Motion

A car is moving along a circular track of radius 10 meters. Its motion is described by the parametri

Easy

Vector Analysis in Projectile Motion

A soccer ball is kicked so that its velocity vector is given by $$\mathbf{v}=\langle5, 7\rangle$$ (i

Easy

Vector Operations

Given the vectors $$u=\langle 3, -2 \rangle$$ and $$v=\langle -1, 4 \rangle$$, (a) Compute the magn

Easy

Vector Operations

Given the vectors $$\mathbf{u} = \langle 3, -2 \rangle$$ and $$\mathbf{v} = \langle -1, 4 \rangle$$,

Easy

Vector Operations and Dot Product

Let $$\mathbf{u}=\langle 3,-1 \rangle$$ and $$\mathbf{v}=\langle -2,4 \rangle$$. Use these vectors t

Easy

Vector Operations in the Plane

Let $$\mathbf{u}=\langle3, -2\rangle$$ and $$\mathbf{v}=\langle -1, 4\rangle$$.

Medium

Vector-Valued Functions: Position and Velocity

A particle’s position is given by the vector-valued function $$\mathbf{p}(t)=\langle 2*t+1, t^2-3*t+

Medium

Trusted by millions

Everyone is relying on Knowt, and we never let them down.

3M +Student & teacher users
5M +Study notes created
10M + Flashcards sets created
Victoria Buendia-Serrano
Victoria Buendia-SerranoCollege freshman
Knowt’s quiz and spaced repetition features have been a lifesaver. I’m going to Columbia now and studying with Knowt helped me get there!
Val
ValCollege sophomore
Knowt has been a lifesaver! The learn features in flashcards let me find time and make studying a little more digestible.
Sam Loos
Sam Loos12th grade
I used Knowt to study for my APUSH midterm and it saved my butt! The import from Quizlet feature helped a ton too. Slayed that test with an A!! 😻😻😻

Need to review before working on AP Precalculus FRQs?

We have over 5 million resources across various exams, and subjects to refer to at any point.

Tips from Former AP Students

FAQWe thought you might have some questions...
Where can I find practice free response questions for the AP Precalculus exam?
The free response section of each AP exam varies slightly, so you’ll definitely want to practice that before stepping into that exam room. Here are some free places to find practice FRQs :
  • Of course, make sure to run through College Board's past FRQ questions!
  • Once you’re done with those go through all the questions in the AP PrecalculusFree Response Room. You can answer the question and have it grade you against the rubric so you know exactly where to improve.
  • Reddit it also a great place to find AP free response questions that other students may have access to.
How do I practice for AP AP Precalculus Exam FRQs?
Once you’re done reviewing your study guides, find and bookmark all the free response questions you can find. The question above has some good places to look! while you’re going through them, simulate exam conditions by setting a timer that matches the time allowed on the actual exam. Time management is going to help you answer the FRQs on the real exam concisely when you’re in that time crunch.
What are some tips for AP Precalculus free response questions?
Before you start writing out your response, take a few minutes to outline the key points you want to make sure to touch on. This may seem like a waste of time, but it’s very helpful in making sure your response effectively addresses all the parts of the question. Once you do your practice free response questions, compare them to scoring guidelines and sample responses to identify areas for improvement. When you do the free response practice on the AP Precalculus Free Response Room, there’s an option to let it grade your response against the rubric and tell you exactly what you need to study more.
How do I answer AP Precalculus free-response questions?
Answering AP Precalculus free response questions the right way is all about practice! As you go through the AP AP Precalculus Free Response Room, treat it like a real exam and approach it this way so you stay calm during the actual exam. When you first see the question, take some time to process exactly what it’s asking. Make sure to also read through all the sub-parts in the question and re-read the main prompt, making sure to circle and underline any key information. This will help you allocate your time properly and also make sure you are hitting all the parts of the question. Before you answer each question, note down the key points you want to hit and evidence you want to use (where applicable). Once you have the skeleton of your response, writing it out will be quick, plus you won’t make any silly mistake in a rush and forget something important.