Ace the free response questions on your AP Precalculus exam with practice FRQs graded by Kai. Choose your subject below.
Knowt can make mistakes. Consider checking important information.
The best way to get better at FRQs is practice. Browse through dozens of practice AP Precalculus FRQs to get ready for the big day.
Analysis of a Rational Function with Factorable Denominator
A function is given by $$f(x)=\frac{x^2-5*x+6}{x^2-4}$$. Examine its domain and discontinuities.
Analysis of a Rational Function with Quadratic Components
Analyze the rational function $$f(x)= \frac{x^2 - 9}{x^2 - 4*x + 3}$$ and determine its key features
Analysis of Removable Discontinuities in an Experiment
In a chemical reaction process, the rate of reaction is modeled by $$R(x)=\frac{x^2-4}{x-2}$$ for $$
Analyzing a Rational Function with Asymptotes
Consider the rational function $$R(x)= \frac{(x-2)(x+3)}{(x-1)(x+4)}$$. Answer each part that follow
Analyzing an Odd Polynomial Function
Consider the function $$p(x)= x^3 - 4*x$$. Investigate its properties by answering the following par
Analyzing Concavity and Points of Inflection for a Polynomial Function
Consider the function $$f(x)= x^3-3*x^2+2*x$$. Although points of inflection are typically determine
Analyzing End Behavior of a Polynomial
Consider the polynomial function $$f(x) = -2*x^4 + 3*x^3 - x + 5$$.
Analyzing End Behavior of Polynomial Functions
Consider the polynomial function $$P(x)= -2*x^4 + 3*x^3 - x + 5$$. Answer the following parts:
Application of the Binomial Theorem
Expand the expression $$(x+3)^5$$ using the Binomial Theorem and answer the following parts.
Average Rate of Change and Tangent Lines
For the function $$f(x)= x^3 - 6*x^2 + 9*x + 4$$, consider the relationship between secant (average
Average Rate of Change of a Rational Function
For the rational function $$r(x)= \frac{4*x}{x+2}$$, answer the following:
Characterizing End Behavior and Asymptotes
A rational function modeling a population is given by $$R(x)=\frac{3*x^2+2*x-1}{x^2-4}$$. Analyze th
Comparative Analysis of Even and Odd Polynomial Functions
Consider the functions $$f(x)= x^4 - 4*x^2 + 3$$ and $$g(x)= x^3 - 2*x$$. Answer the following parts
Comparative Analysis of Polynomial and Rational Functions
A function is defined piecewise by $$ f(x)=\begin{cases} x^2-4 & \text{if } x\le2, \\ \frac{x^2-4}{x
Complex Zeros and Conjugate Pairs
Consider the polynomial $$p(x)= x^4 + 4*x^3 + 8*x^2 + 8*x + 4$$. Answer the following parts.
Composite Function Analysis in Environmental Modeling
Environmental data shows the concentration (in mg/L) of a pollutant over time (in hours) as given in
Composite Function Transformations
Consider the polynomial function $$f(x)= x^2-4$$. A new function is defined by $$g(x)= \ln(|f(x)+5|)
Composite Functions and Inverses
Let $$f(x)= 3*(x-2)^2+1$$.
Concavity and Inflection Points of a Polynomial Function
For the function $$g(x)= x^3 - 3*x^2 - 9*x + 5$$, analyze the concavity and determine any inflection
Constructing a Rational Function from Graph Behavior
An unknown rational function has a graph with a vertical asymptote at $$x=3$$, a horizontal asymptot
Cubic Function Inverse Analysis
Consider the cubic function $$f(x) = x^3 - 6*x^2 + 9*x$$. Answer the following questions related to
Cubic Polynomial Analysis
Consider the cubic polynomial function $$f(x) = 2*x^3 - 3*x^2 - 12*x + 8$$. Analyze the function as
Determining Degree from Discrete Data
Below is a table representing the output values of a polynomial function for equally-spaced input va
Determining Domain and Range of a Transformed Rational Function
Consider the function $$g(x)= \frac{x^2 - 9}{x-3}$$. Answer the following:
Determining Polynomial Degree from Finite Differences
A function $$f(x)$$ is defined on equally spaced values of $$x$$, with the following data: | x | f(
End Behavior of a Quartic Polynomial
Consider the quartic polynomial function $$f(x) = -3*x^4 + 5*x^3 - 2*x^2 + x - 7$$. Analyze the end
Engineering Curve Analysis: Concavity and Inflection
An engineering experiment recorded the deformation of a material, modeled by a function whose behavi
Evaluating Limits and Discontinuities in a Rational Function
Consider the rational function $$f(x)=\frac{x^2-4}{x-2}$$, which is defined for all real $$x$$ excep
Evaluating Limits Involving Rational Expressions with Asymptotic Behavior
Consider the function $$f(x)=\frac{2*x^2-3*x-5}{x^2-1}$$. Answer the following:
Examining End Behavior of Polynomial Functions
Consider the polynomial function $$f(x)= -3*x^4 + 2*x^3 - x + 7$$. Answer the following parts.
Expansion Using the Binomial Theorem in Forecasting
In a business forecast, the expression $$(x + 5)^4$$ is used to model compound factors affecting rev
Exploring Domain Restrictions via Inverse Functions in a Quadratic Model
Consider the quadratic function $$f(x)= -x^2 + 6*x - 8$$. Answer the following questions regarding i
Exploring Symmetry in Polynomial Functions
Let $$f(x)= x^4-5*x^2+4$$.
Exponential Equations and Logarithm Applications in Decay Models
A radioactive substance decays according to the model $$A(t)= A_0*e^{-0.3*t}$$. A researcher analyze
Finding and Interpreting Inflection Points
Consider the polynomial function $$f(x)= x^3 - 6*x^2 + 9*x + 1$$. Answer the following parts.
Function Transformations and Parent Functions
The parent function is $$f(x)= x^2$$. Consider the transformed function $$g(x)= -3*(x-4)^2 + 5$$. An
Geometric Series Model in Area Calculations
An architect designs a sequence of rectangles such that each rectangle's area is 0.8 times the area
Graphical Analysis of Inverse Function for a Linear Transformation
Consider the function $$f(x)=4*(x+1)-5$$. Answer the following questions regarding the transformatio
Graphical Interpretation of Inverse Functions from a Data Table
A table below represents selected values of a polynomial function $$f(x)$$: | x | f(x) | |----|---
Intersection of Functions in Supply and Demand
Consider two functions that model supply and demand in a market. The supply function is given by $$f
Inverse Analysis Involving Multiple Transformations
Consider the function $$f(x)= 5 - 2*(x+3)^2$$. Answer the following questions regarding its inverse
Inverse Analysis of a Modified Rational Function
Consider the function $$f(x)=\frac{x^2+1}{x-1}$$. Answer the following questions concerning its inve
Inverse Analysis of a Quartic Polynomial Function
Consider the quartic function $$f(x)= (x-1)^4 + 2$$. Answer the following questions concerning its i
Inverse Function of a Rational Function with a Removable Discontinuity
Consider the function $$f(x)= \frac{x^2-4}{x-2}$$. Answer the following questions regarding its inve
Inverse of a Complex Rational Function
Consider the function $$f(x)=\frac{3*x+2}{2*x-1}$$. Answer the following questions regarding its inv
Inversion of a Polynomial Ratio Function
Consider the function $$f(x)=\frac{x^2-1}{x+2}$$. Answer the following questions regarding its inver
Investigating a Real-World Polynomial Model
A physicist models the vertical trajectory of a projectile by the quadratic function $$h(t)= -5*t^2+
Investigating End Behavior of a Polynomial Function
Consider the polynomial function $$f(x)= -4*x^4+ x^3+ 2*x^2-7*x+1$$.
Logarithmic and Exponential Equations with Rational Functions
A process is modeled by the function $$F(x)= \frac{3*e^{2*x} - 5}{e^{2*x}+1}$$, where x is measured
Logarithmic Equation Solving in a Financial Model
An investor compares two savings accounts. Account A grows continuously according to the model $$A(t
Manufacturing Efficiency Polynomial Model
A company's manufacturing efficiency is modeled by a polynomial function. The function, given by $$P
Modeling a Real-World Scenario with a Rational Function
A biologist is studying the concentration of a nutrient in a lake. The concentration (in mg/L) is mo
Modeling Population Growth with a Polynomial Function
A population of a certain species in a controlled habitat is modeled by the cubic function $$P(t)= -
Modeling with Inverse Variation: A Rational Function
A physics experiment models the intensity $$I$$ of light as inversely proportional to the square of
Modeling with Rational Functions
A chemist models the concentration of a reactant over time with the rational function $$C(t)= \frac{
Piecewise Function Construction for Utility Rates
A utility company charges for electricity according to the following scheme: For usage $$u$$ (in kWh
Piecewise Function without a Calculator
Let the function $$f(x)=\begin{cases} x^2-1 & \text{for } x<2, \\ \frac{x^2-4}{x-2} & \text{for } x\
Polynomial End Behavior and Zeros Analysis
A polynomial function is given by $$f(x)= 2*x^4 - 3*x^3 - 12*x^2$$. This function models a physical
Polynomial Interpolation and Finite Differences
A quadratic function is used to model the height of a projectile. The following table gives the heig
Polynomial Long Division and Slant Asymptote
Perform polynomial long division on the function $$f(x)= \frac{3*x^3 - 2*x^2 + 4*x - 5}{x^2 - 1}$$,
Polynomial Long Division and Slant Asymptote
Consider the rational function $$F(x)= \frac{x^3 + 2*x^2 - 5*x + 1}{x - 2}$$. Answer the following p
Polynomial Long Division and Slant Asymptote
Consider the function $$P(x)= \frac{2*x^3 - 3*x^2 + x - 5}{x-2}$$. Answer the following parts.
Polynomial Model Construction and Interpretation
A company’s profit (in thousands of dollars) over time t (in months) is modeled by the quadratic fun
Polynomial Model from Temperature Data
A researcher records the ambient temperature over time and obtains the following data: | Time (hr)
Population Growth Modeling with a Polynomial Function
A regional population (in thousands) is modeled by a polynomial function $$P(t)$$, where $$t$$ repre
Product Revenue Rational Model
A company’s product revenue (in thousands of dollars) is modeled by the rational function $$R(x)= \f
Projectile Motion Analysis
A projectile is launched so that its height (in meters) as a function of time (in seconds) is given
Quadratic Function Inverse Analysis with Domain Restriction
Consider the function $$f(x) = x^2 - 4*x + 5$$. Assume that the domain of $$f$$ is restricted so tha
Rate of Change in a Quadratic Function
Consider the quadratic function $$f(x)= 2*x^2 - 4*x + 1$$. Answer the following parts regarding its
Revenue Function Transformations
A company models its revenue with a polynomial function $$f(x)$$. It is known that $$f(x)$$ has x-in
Revenue Modeling with a Polynomial Function
A small theater's revenue from ticket sales is modeled by the polynomial function $$R(x)= -0.5*x^3 +
Roller Coaster Curve Analysis
A roller coaster's vertical profile is modeled by the polynomial function $$f(x)= -0.05*x^3 + 1.2*x^
Solving a Logarithmic Equation with Polynomial Bases
Consider the equation $$\log_2(p(x)) = x + 1$$ where $$p(x)= x^2+2*x+1$$.
Solving a Polynomial Inequality
Solve the inequality $$x^3 - 4*x^2 + x + 6 \ge 0$$ and justify your solution.
Solving a System of Equations: Polynomial vs. Rational
Consider the system of equations where $$f(x)= x^2 - 1$$ and $$g(x)= \frac{2*x}{x+2}$$. Answer the f
Transformation and Inversions of a Rational Function
A manufacturer models the cost per unit with the function $$C(x)= \frac{5*x+20}{x-2}$$, where x is t
Use of Logarithms to Solve for Exponents in a Compound Interest Equation
An investment of $$1000$$ grows continuously according to the formula $$I(t)=1000*e^{r*t}$$ and doub
Zeros and Complex Conjugates in Polynomial Functions
A polynomial function of degree 4 is known to have real zeros at $$x=1$$ and $$x=-2$$, and two non-r
Zeros and End Behavior in a Higher-Degree Polynomial
Consider the polynomial $$P(x)= (x+1)^2 (x-2)^3 (x-5)$$. Answer the following parts.
Analyzing Exponential Function Behavior from a Graph
An exponential function is depicted in the graph provided. Analyze the key features of the function.
Arithmetic Savings Plan
A person decides to save money every month, starting with an initial deposit of $$50$$ dollars, with
Arithmetic Sequence Analysis
Consider an arithmetic sequence with initial term $$a_0$$ and common difference $$d$$. Analyze the c
Arithmetic Sequence Analysis
An arithmetic sequence is defined as an ordered list of numbers with a constant difference between c
Base Transformation and End Behavior
Consider the functions \(f(x)=2^{x}\) and \(g(x)=5\cdot2^{(x+3)}-7\). (a) Express the function \(f(
Cell Division Pattern
A culture of cells undergoes division such that the number of cells doubles every hour. The initial
Comparing Arithmetic and Exponential Models in Population Growth
Two neighboring communities display different population growth patterns. Community A increases by a
Comparing Linear and Exponential Growth Models
A company is analyzing its profit growth using two distinct models: an arithmetic model given by $$P
Comparing Linear and Exponential Revenue Models
A company is forecasting its revenue growth using two models based on different assumptions. Initial
Composite Functions: Shifting and Scaling in Log and Exp
Consider the functions $$f(x)=2*e^(x-3)$$ and $$g(x)=\ln(x)+4$$.
Composite Sequences: Combining Geometric and Arithmetic Models in Production
A factory’s monthly production is influenced by two factors. There is a fixed increase in production
Composition of Exponential and Logarithmic Functions
Given two functions: $$f(x) = 3 \cdot 2^x$$ and $$g(x) = \log_2(x)$$, answer the following parts.
Compound Interest vs. Simple Interest
A financial analyst is comparing two interest methods on an initial deposit of $$10000$$ dollars. On
Connecting Exponential Functions with Geometric Sequences
An exponential function $$f(x) = 5 \cdot 3^x$$ can also be interpreted as a geometric sequence where
Data Modeling: Exponential vs. Linear Models
A scientist collected data on the growth of a substance over time. The table below shows the measure
Determining an Exponential Model from Data
An outbreak of a virus produced the following data: | Time (days) | Infected Count | |-------------
Earthquake Intensity on the Richter Scale
The Richter scale defines earthquake magnitude as \(M = \log_{10}(I/I_{0})\), where \(I/I_{0}\) is t
Exponential Decay and Log Function Inverses in Pharmacokinetics
In a pharmacokinetics study, the concentration of a drug in a patient’s bloodstream is observed to d
Exponential Decay in Pollution Reduction
The concentration of a pollutant in a lake decreases exponentially according to the model $$f(t)= a\
Exponential Equations via Logarithms
Solve the exponential equation $$3 * 2^(2*x) = 6^(x+1)$$.
Exponential Function Transformations
Consider an exponential function defined by f(x) = a·bˣ. A graph of this function is provided in the
Exponential Growth from Percentage Increase
A process increases by 8% per unit time. Write an exponential function that models this growth.
Finding Terms in a Geometric Sequence
A geometric sequence is known to satisfy $$g_3=16$$ and $$g_7=256$$.
Finding the Inverse of an Exponential Function
Given the exponential function $$f(x)= 4\cdot e^{0.5*x} - 3,$$ find the inverse function $$f^{-1}(
Geometric Sequence Construction
Consider a geometric sequence where the first term is $$g_0 = 3$$ and the second term is $$g_1 = 6$$
Inverse and Domain of a Logarithmic Transformation
Given the function $$f(x) = \log_3(x - 2) + 4$$, answer the following parts.
Inverse Functions in Exponential Contexts
Consider the function $$f(x)= 5^x + 3$$. Analyze its inverse function.
Inverse of a Composite Function
Let $$f(x)= e^x$$ and $$g(x)= \ln(x) + 3$$.
Inverse of an Exponential Function
Given the exponential function $$f(x) = 5 \cdot 2^x$$, determine its inverse.
Inverse of an Exponential Function
Let f(x) = 5·e^(2*x) - 3. Find the inverse function f⁻¹(x) and verify your answer by composing f and
Inverse Relationships in Exponential and Logarithmic Functions
Consider the functions \(f(x)=2^{(x-1)}+3\) and \(g(x)=\log_{2}(x-3)+1\). (a) Discuss under what co
Loan Payment and Arithmetico-Geometric Sequence
A borrower takes a loan of $$10,000$$ dollars. The loan accrues a monthly interest of 1% and the bor
Log-Exponential Function and Its Inverse
For the function $$f(x)=\log_2(3^(x)-5)$$, determine the domain, prove it is one-to-one, find its in
Log-Exponential Hybrid Function and Its Inverse
Consider the function $$f(x)=\log_3(8*3^(x)-5)$$. Analyze its domain, prove its one-to-one property,
Logarithmic Analysis of Earthquake Intensity
The magnitude of an earthquake on the Richter scale is determined using a logarithmic function. Cons
Logarithmic Equation and Extraneous Solutions
Solve the logarithmic equation $$log₂(x - 1) + log₂(3*x + 2) = 3$$.
Logarithmic Function Analysis
Consider the logarithmic function $$f(x) = 3 + 2·log₅(x - 1)$$.
Logarithmic Function and Properties
Consider the logarithmic function $$g(x) = \log_3(x)$$ and analyze its properties.
Logarithmic Function with Scaling and Inverse
Consider the function $$f(x)=\frac{1}{2}\log_{10}(x+4)+3$$. Analyze its monotonicity, find the inver
Modeling Bacterial Growth with Exponential Functions
A research laboratory is tracking the growth of a bacterial culture. A graph showing experimental da
Natural Logarithms in Continuous Growth
A population grows continuously according to the function $$P(t) = P_0e^{kt}$$. At \(t = 0\), \(P(0)
pH and Logarithmic Functions
The pH of a solution is defined by $$pH = -\log_{10}[H^+]$$, where $$[H^+]$$ represents the hydrogen
Population Growth Inversion
A town's population grows according to the function $$f(t)=1200*(1.05)^(t)$$, where $$t$$ is the tim
Population Growth Modeling with Exponential Functions
A small town has its population recorded every 5 years, as shown in the table below: | Year | Popul
Population Growth of Bacteria
A bacterial colony doubles in size every hour, so that its size follows a geometric sequence. Recall
Radioactive Decay and Exponential Functions
A sample of a radioactive substance is monitored over time. The decay in mass is recorded in the tab
Radioactive Decay and Half-Life Estimation Through Data
A radioactive substance decays exponentially according to the function $$f(t)= a * b^t$$. The follow
Radioactive Decay and Logarithmic Inversion
A radioactive substance decays such that its mass halves every 8 years. At time \(t=0\), the substan
Radioactive Decay Modeling
A radioactive substance decays with a half-life of $$5$$ years. A sample has an initial mass of $$80
Radioactive Decay Problem
A radioactive substance decays exponentially with a half-life of 5 years and an initial mass of $$20
Real Estate Price Appreciation
A real estate property appreciates according to an exponential model and receives an additional fixe
Shifted Exponential Function and Its Inverse
Consider the function $$f(x)=7-4*2^(x-3)$$. Determine its one-to-one nature, find its inverse functi
Transformation Effects on Exponential Functions
Consider the function $$f(x) = 3 \cdot 2^x$$, which is transformed to $$g(x) = 3 \cdot 2^{(x+1)} - 4
Transformation of an Exponential Function
Consider the basic exponential function $$f(x)= 2^x$$. A transformed function is given by $$g(x)= 3\
Transformation of Exponential Functions
Consider the exponential function $$f(x)= 3 * 5^x$$. A new function $$g(x)$$ is defined by applying
Transformations in Logarithmic Functions
Given \(f(x)=\log_{3}(x)\), consider the transformed function \(g(x)=-2\log_{3}(2x-6)+4\). (a) Dete
Transformations of Exponential Functions
Consider the exponential function \(f(x)=3\cdot2^{x}\). (a) Determine the equation of the transform
Transformations of Exponential Functions
Consider the base exponential function $$f(x)= 3 \cdot 2^x$$. A transformed function is defined by
Transformations of Exponential Functions
Consider the exponential function $$f(x)= 7 * e^{0.3x}$$. Investigate its transformations.
Transformed Exponential Equation
Solve the exponential equation $$5 \cdot (1.2)^{(x-3)} = 20$$.
Tumor Growth with Time Dilation Effects
A medical researcher is studying the growth of a tumor, which is modeled by the exponential function
Wildlife Population Decline
A wildlife population declines by 15% each year, forming a geometric sequence.
Analysis of a Rose Curve
Examine the polar equation $$r=3*\sin(3\theta)$$.
Analysis of Rose Curves
A polar curve is given by the equation $$r=4*\cos(3*θ)$$ which represents a rose curve. Analyze the
Analyzing a Limacon
Consider the polar function $$r=3+2\cos(\theta)$$.
Analyzing a Rose Curve
Consider the polar equation $$r=3\,\sin(2\theta)$$.
Analyzing Damped Oscillations
A mass-spring system oscillates with damping according to the model $$y(t)=10*\cos(2*\pi*t)*e^{-0.5
Analyzing Phase Shifts in Sinusoidal Functions
Investigate the function $$y=\sin\Big(2*(x-\frac{\pi}{3})\Big)+0.5$$ by identifying its transformati
Analyzing Sinusoidal Variation in Daylight Hours
A researcher models daylight hours over a year with the function $$D(t) = 5 + 2.5*\sin((2\pi/365)*(t
Combining Logarithmic and Trigonometric Equations
Consider a model where the amplitude of a cosine function is modulated by an exponential decay. The
Composite Function Analysis with Polar and Trigonometric Elements
A radar system uses the polar function $$r(\theta)=5+2*\sin(\theta)$$ to model the distance to a tar
Conversion Between Rectangular and Polar Coordinates
Convert the given points between rectangular and polar coordinate systems and discuss the relationsh
Damped Oscillations: Combining Sinusoidal Functions and Geometric Sequences
A mass-spring system oscillates with decreasing amplitude following a geometric sequence. Its displa
Daylight Hours Modeling
A city's daylight hours vary sinusoidally throughout the year. It is observed that the maximum dayli
Exploring the Pythagorean Identity
The Pythagorean identity $$\sin^2(θ)+\cos^2(θ)=1$$ is fundamental in trigonometry. Use this identity
Graph Interpretation from Tabulated Periodic Data
A study recorded the oscillation of a pendulum over time. Data is provided in the table below showin
Graph Transformations of Sinusoidal Functions
Consider the sinusoidal function $$f(x) = 3*\sin\Bigl(2*(x - \frac{\pi}{4})\Bigr) - 1$$.
Graph Transformations: Sine and Cosine Functions
The functions $$f(\theta)=\sin(\theta)$$ and $$g(\theta)=\cos(\theta)$$ are related through a phase
Graphical Reflection of Trigonometric Functions and Their Inverses
Consider the sine function and its inverse. The graph of an inverse function is the reflection of th
Graphing a Limacon
Given the polar equation $$r=2+3*\cos(\theta)$$, analyze and graph the corresponding limacon.
Graphing a Rose Curve
Consider the polar function $$r=4\cos(3\theta)$$ and analyze its properties.
Graphing and Analyzing a Transformed Sine Function
Consider the function $$f(x)=3\sin\left(2\left(x-\frac{\pi}{4}\right)\right)+1$$. Answer the followi
Graphing Polar Circles and Roses
Analyze the following polar equations: $$r=2$$ and $$r=3*\cos(2\theta)$$.
Graphing the Tangent Function and Analyzing Asymptotes
Consider the function $$y = \tan(x)$$. Answer the following:
Interpreting Trigonometric Data Models
A set of experimental data capturing a periodic phenomenon is given in the table below. Use these da
Inverse Tangent Composition and Domain
Consider the composite function $$f(x) = \arctan(\tan(x))$$.
Inverse Trigonometric Analysis
Consider the inverse sine function $$y = \arcsin(x)$$ which is used to determine angle measures from
Inverse Trigonometric Function Analysis
Consider the function $$f(x)=\sin(x)$$ defined on the interval $$\left[-\frac{\pi}{2},\frac{\pi}{2}\
Multiple Angle Equation
Solve the trigonometric equation $$2*\sin(2x) - \sqrt{3} = 0$$ for all $$x$$ in the interval $$[0, 2
Phase Shift Analysis in Sinusoidal Functions
A sinusoidal function describing a physical process is given by $$f(\theta)=5*\sin(\theta-\phi)+2$$.
Polar Circle Graph
Consider the polar equation $$r = 4$$ which represents a circle.
Polar Coordinates Conversion
Convert between Cartesian and polar coordinates and analyze related polar equations.
Polar Function with Rate of Change Analysis
Given the polar function $$r(\theta)=2+\sin(\theta)$$, analyze its behavior.
Polar Graphs: Conversion and Analysis
Analyze the polar equation $$r=4*\cos(\theta)+3$$.
Polar Rate of Change
Consider the polar function $$r = 3 + \sin(\theta)$$.
Rate of Change in Polar Functions
For the polar function $$r(\theta)=4+\cos(\theta)$$, investigate its rate of change.
Real-World Modeling: Exponential Decay with Sinusoidal Variation
A river's water level is affected by tides and evaporation. It is modeled by the function $$L(t)=8*
Reciprocal and Pythagorean Identities
Verify the identity $$1+\cot^2(x)=\csc^2(x)$$ and use it to solve the related trigonometric equation
Reciprocal Trigonometric Functions: Secant, Cosecant, and Cotangent
Consider the functions $$f(\theta)=\sec(\theta)$$, $$g(\theta)=\csc(\theta)$$, and $$h(\theta)=\cot(
Rewriting and Graphing a Composite Trigonometric Function
Given the function $$f(x)=\cos(x)+\sin(x)$$, transform it into the form $$R*\cos(x-\phi)$$.
Secant Function and Its Transformations
Investigate the function $$f(\theta)=\sec(\theta)$$ and the transformation $$h(\theta)=2*\sec(\theta
Sinusoidal Function and Its Inverse
Consider the function $$f(x)=2*\sin(x)+1$$ defined on the restricted domain $$\left[-\frac{\pi}{2},\
Sinusoidal Function Transformations in Signal Processing
A communications engineer is analyzing a signal modeled by the sinusoidal function $$f(x)=3*\cos\Big
Solving Trigonometric Equations
A projectile is launched such that its launch angle satisfies the equation $$\sin(2*\theta)=0.5$$. A
Solving Trigonometric Equations
Solve the trigonometric equation $$\sin(\theta) + \sqrt{3}*\cos(\theta)=1$$.
Tangent Function and Asymptotes
Examine the function $$f(\theta)=\tan(\theta)$$ defined on the interval $$\left(-\frac{\pi}{2}, \fra
Tangent Function Shift
Consider the function $$f(x) = \tan\left(x - \frac{\pi}{6}\right)$$.
Tide Height Model: Using Sine Functions
A coastal region experiences tides that follow a sinusoidal pattern. A table of tide heights (in fee
Transformations of Sinusoidal Functions
Consider the function $$y = 3*\sin(2*(x - \pi/4)) - 1$$. Answer the following:
Trigonometric Identities and Sum Formulas
Trigonometric identities are important for simplifying expressions that arise in wave interference a
Trigonometric Inequality Solution
Solve the inequality $$\sin(x) > \frac{1}{2}$$ for $$x$$ in the interval $$[0, 2\pi]$$.
Understanding Coterminal Angles and Their Applications
Coterminal angles are important in trigonometry as they represent angles with the same terminal side
Unit Circle and Special Triangles
Consider the unit circle and the properties of special right triangles. Answer the following for a 4
Using Trigonometric Sum and Difference Identities
Prove the identity $$\sin(x+y)=\sin(x)\cos(y)+\cos(x)\sin(y)$$ and apply it.
Verification and Application of Trigonometric Identities
Consider the sine addition identity $$\sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\b
Verifying a Trigonometric Identity
Demonstrate that the identity $$\sin^2(x)+\cos^2(x)=1$$ holds for all real numbers \(x\).
Vibration Analysis
A mechanical system oscillates with displacement given by $$d(t) = 5*\cos(4t - \frac{\pi}{3})$$ (in
Advanced Matrix Modeling in Economic Transitions
An economic model is represented by a 3×3 transition matrix $$M=\begin{pmatrix}0.5 & 0.2 & 0.3\\0.1
Analysis of a Vector-Valued Position Function
Consider the vector-valued function $$\mathbf{p}(t) = \langle 2*t + 1, 3*t - 2 \rangle$$ representin
Analyzing the Composition of Two Matrix Transformations
Let matrices be given by $$A=\begin{pmatrix}1 & 2\\0 & 1\end{pmatrix}$$ and $$B=\begin{pmatrix}2 & 0
Average Rate of Change in Parametric Motion
A projectile is launched and its motion is modeled by $$x(t)=3*t+1$$ and $$y(t)=16-4*t^2$$, where $$
Average Rate of Change in Parametric Motion
For the parametric functions $$x(t) = t^3 - 3*t + 2$$ and $$y(t) = 2*t^2 - t$$ defined for $$t \in [
Circular Motion Parametrization
Consider a particle moving along a circular path defined by the parametric equations $$x(t)= 5*\cos(
Complex Parametric and Matrix Analysis in Planar Motion
A particle moves in the plane according to the parametric equations $$x(t)=3\cos(t)+2*t$$ and $$y(t)
Composition of Linear Transformations
Given matrices $$A=\begin{pmatrix}2 & 0 \\ 0 & 3\end{pmatrix}$$ and $$B=\begin{pmatrix}0 & 1 \\ 1 &
Discontinuity Analysis in a Function Modeling Particle Motion
A particle’s position along a line is given by the piecewise function: $$s(t)=\begin{cases} \frac{t^
Discontinuity in a Function Modeling Transition between States
A system's state is modeled by the function $$S(x)=\begin{cases} \frac{x^2-16}{x-4} & \text{if } x \
Dot Product, Projection, and Angle Calculation
Let $$\mathbf{u}=\langle4, 1\rangle$$ and $$\mathbf{v}=\langle2, 3\rangle$$.
Eliminating the Parameter in an Implicit Function
A curve is defined by the parametric equations $$x(t)=t+1$$ and $$y(t)=t^2-1$$.
Estimating a Definite Integral with a Table
The function x(t) represents the distance traveled (in meters) by an object over time, with the foll
Ferris Wheel Motion
A Ferris wheel rotates counterclockwise with a center at $$ (2, 3) $$ and a radius of $$5$$. The whe
Finding Angle Between Vectors
Given vectors $$\mathbf{a}=\langle 1,2 \rangle$$ and $$\mathbf{b}=\langle 3,4 \rangle$$, determine t
FRQ 3: Linear Parametric Motion - Car Journey
A car travels along a linear path described by the parametric equations $$x(t)=3+2*t$$ and $$y(t)=4-
FRQ 5: Parametrically Defined Ellipse
An ellipse is described parametrically by $$x(t)=3*\cos(t)$$ and $$y(t)=2*\sin(t)$$ for $$t\in[0,2\p
FRQ 8: Vector Analysis - Dot Product and Angle
Given the vectors $$\textbf{u}=\langle3,4\rangle$$ and $$\textbf{v}=\langle-2,5\rangle$$, analyze th
FRQ 9: Vectors in Motion and Velocity
A particle's position is described by the vector-valued function $$p(t)=\langle2*t-1, t^2+1\rangle$$
FRQ 11: Matrix Inversion and Determinants
Let matrix $$A=\begin{bmatrix}3 & 4\\2 & -1\end{bmatrix}$$.
FRQ 13: Area Determined by a Matrix's Determinant
Vectors $$\textbf{v}=\langle4,3\rangle$$ and $$\textbf{w}=\langle-2,5\rangle$$ form a parallelogram.
FRQ 18: Dynamic Systems and Transition Matrices
Consider a transition matrix modeling state changes given by $$M=\begin{bmatrix}0.7 & 0.3\\0.4 & 0.6
Graphical Analysis of Parametric Motion
A particle moves in the plane with its position defined by the functions $$x(t)= t^2 - 2*t$$ and $$y
Inverse Analysis of a Rational Function
Consider the function $$f(x)=\frac{2*x+3}{x-1}$$. Analyze the properties of this function and its in
Inverse Matrix and Transformation of the Unit Square
Given the transformation matrix $$A=\begin{pmatrix}3 & 1 \\ 2 & 2\end{pmatrix}$$ applied to the unit
Investigating Inverse Transformations in the Plane
Consider the linear transformation defined by $$L(\mathbf{v})=\begin{pmatrix}2 & 1\\3 & 4\end{pmatri
Linear Transformations via Matrices
A linear transformation \(L\) in \(\mathbb{R}^2\) is defined by $$L(x,y)=(3*x- y, 2*x+4*y)$$. This t
Matrix Applications in State Transitions
In a system representing transitions between two states, the following transition matrix is used: $
Matrix Methods for Solving Linear Systems
Solve the system of linear equations below using matrix methods: $$2x+3y=7$$ $$4x-y=5$$
Matrix Modeling in Population Dynamics
A biologist is studying a species with two age classes: juveniles and adults. The population dynamic
Matrix Transformation in Graphics
In computer graphics, images are often transformed using matrices. Consider the transformation matri
Parabolic Motion in a Parametric Framework
A projectile is launched with its motion described by the equations $$x(t)=4*t$$ and $$y(t)=-4.9*t^2
Parameter Transition in a Piecewise-Defined Function
Consider the function $$g(t)=\begin{cases} \frac{t^3-1}{t-1} & \text{if } t \neq 1, \\ 5 & \text{if
Parametric Equations and Rates in a Biological Context
A bacteria colony in a Petri dish is observed to move in a periodic manner, with its position descri
Parametric Motion Analysis Using Tabulated Data
A particle moves in the plane following a parametric function. The following table represents the pa
Parametric Representation of a Parabola
Consider the parabola defined by $$y= 2*x^2 + 3$$. Answer the following:
Parametric Representation of an Ellipse
An ellipse is defined by the equation $$\frac{(x-3)^2}{4} + \frac{(y+2)^2}{9} = 1.$$ (a) Write a
Parametrization of a Parabola
Given the explicit function $$y = 2*x^2 + 3*x - 1$$, answer the following:
Parametrizing a Parabola
A parabola is defined parametrically by $$x(t)=t$$ and $$y(t)=t^2$$.
Particle Motion Through Position and Velocity Vectors
A particle’s position is given by the vector function $$\vec{p}(t)= \langle 3*t^2 - 2*t,\, t^3 \rang
Planar Motion Analysis
A particle moves in the plane with parametric functions $$x(t)= 3*t - t^2$$ and $$y(t)= 4*t - 2*t^2$
Population Transition Matrix Analysis
A population dynamics model is represented by the transition matrix $$T=\begin{pmatrix}0.7 & 0.2 \\
Projectile Motion: Parabolic Path
A projectile is launched so that its motion is modeled by the parametric equations $$x(t)=t$$ and $
Rate of Change Analysis in Parametric Motion
A particle’s movement is described by the parametric equations $$x(t)=t^3-6*t+4$$ and $$y(t)=2*t^2-t
Rotation of a Force Vector
A force vector is given by \(\vec{F}= \langle 10, 5 \rangle\). This force is rotated by 30° counterc
Tangent Line to a Parametric Curve
Consider the parametric equations $$x(t)=t^2-3$$ and $$y(t)=2*t+1$$. (a) Compute the average rate o
Transition from Parametric to Explicit Function
A curve is defined by the parametric equations $$x(t)=\ln(t)$$ and $$y(t)=t+1$$, where $$t>0$$. Answ
Uniform Circular Motion
A car is moving along a circular track of radius 10 meters. Its motion is described by the parametri
Vector Addition and Scalar Multiplication
Consider the vectors $$\vec{u}=\langle 1, 3 \rangle$$ and $$\vec{v}=\langle -2, 4 \rangle$$:
Vector Analysis in Projectile Motion
A soccer ball is kicked so that its velocity vector is given by $$\mathbf{v}=\langle5, 7\rangle$$ (i
Vector Components and Magnitude
Given the vector $$\vec{v}=\langle 3, -4 \rangle$$:
Vector Operations
Given the vectors $$\mathbf{u} = \langle 3, -2 \rangle$$ and $$\mathbf{v} = \langle -1, 4 \rangle$$,
Vector Operations in the Plane
Let the vectors be given by $$\mathbf{u}=\langle 3,-4\rangle$$ and $$\mathbf{v}=\langle -2,5\rangle$
Vectors in Polar and Cartesian Coordinates
A drone's position is described in polar coordinates by $$r(t)=5+t$$ and $$\theta(t)=\frac{\pi}{6}t$
Everyone is relying on Knowt, and we never let them down.
We have over 5 million resources across various exams, and subjects to refer to at any point.
We’ve found the best flashcards & notes on Knowt.