AP Precalculus FRQ Room

Ace the free response questions on your AP Precalculus exam with practice FRQs graded by Kai. Choose your subject below.

Which subject are you taking?

Knowt can make mistakes. Consider checking important information.

Pick your exam

AP Precalculus Free Response Questions

The best way to get better at FRQs is practice. Browse through dozens of practice AP Precalculus FRQs to get ready for the big day.

  • View all (250)
  • Unit 1: Polynomial and Rational Functions (59)
  • Unit 2: Exponential and Logarithmic Functions (58)
  • Unit 3: Trigonometric and Polar Functions (66)
  • Unit 4: Functions Involving Parameters, Vectors, and Matrices (67)
Unit 1: Polynomial and Rational Functions

Analysis of a Rational Function with Quadratic Components

Analyze the rational function $$f(x)= \frac{x^2 - 9}{x^2 - 4*x + 3}$$ and determine its key features

Medium

Analyzing a Rational Function with a Hole

Consider the rational function $$R(x)= \frac{x^2-4}{x^2-x-6}$$.

Medium

Analyzing an Odd Polynomial Function

Consider the function $$p(x)= x^3 - 4*x$$. Investigate its properties by answering the following par

Easy

Analyzing Concavity and Points of Inflection for a Polynomial Function

Consider the function $$f(x)= x^3-3*x^2+2*x$$. Although points of inflection are typically determine

Medium

Analyzing Concavity in Polynomial Functions

A car’s displacement over time is modeled by the polynomial function $$f(x)= x^3 - 6*x^2 + 11*x - 6$

Medium

Analyzing End Behavior of Polynomial Functions

Consider the polynomial function $$P(x)= -2*x^4 + 3*x^3 - x + 5$$. Answer the following parts:

Easy

Application of the Binomial Theorem

Expand the expression $$(x+3)^5$$ using the Binomial Theorem and answer the following parts.

Easy

Average Rate of Change in Rational Functions

Let $$h(x)= \frac{3}{x-1}$$ represent the speed (in km/h) of a vehicle as a function of a variable x

Medium

Average Rate of Change of a Rational Function

For the rational function $$r(x)= \frac{4*x}{x+2}$$, answer the following:

Medium

Break-even Analysis via Synthetic Division

A company’s cost model is represented by the polynomial function $$C(x) = x^3 - 6*x^2 + 11*x - 6$$,

Medium

Characterizing End Behavior and Asymptotes

A rational function modeling a population is given by $$R(x)=\frac{3*x^2+2*x-1}{x^2-4}$$. Analyze th

Medium

Composite Functions and Inverses

Let $$f(x)= 3*(x-2)^2+1$$.

Medium

Constructing a Function Model from Experimental Data

An engineer collects data on the stress (in MPa) experienced by a material under various applied for

Medium

Constructing a Rational Function from Graph Behavior

An unknown rational function has a graph with a vertical asymptote at $$x=3$$, a horizontal asymptot

Hard

Cubic Polynomial Analysis

Consider the cubic polynomial function $$f(x) = 2*x^3 - 3*x^2 - 12*x + 8$$. Analyze the function as

Medium

Determining Domain and Range from Graphical Data

A function is represented by a graph with certain open and closed endpoints. A table of select input

Easy

Determining the Degree of a Polynomial from Data

A table of values is given below for a function $$f(x)$$ measured at equally spaced x-values: | x |

Easy

Determining the Degree of a Polynomial via Differences

A function $$f(x)$$ is defined on equally spaced inputs and the following table gives selected value

Easy

Engineering Application: Stress Analysis Model

In a stress testing experiment, the stress $$S(x)$$ on a component (in appropriate units) is modeled

Medium

Engineering Curve Analysis: Concavity and Inflection

An engineering experiment recorded the deformation of a material, modeled by a function whose behavi

Easy

Evaluating Limits Involving Rational Expressions with Asymptotic Behavior

Consider the function $$f(x)=\frac{2*x^2-3*x-5}{x^2-1}$$. Answer the following:

Hard

Examining End Behavior of Polynomial Functions

Consider the polynomial function $$f(x)= -3*x^4 + 2*x^3 - x + 7$$. Answer the following parts.

Easy

Expansion Using the Binomial Theorem in Forecasting

In a business forecast, the expression $$(x + 5)^4$$ is used to model compound factors affecting rev

Easy

Exploring End Behavior and Leading Coefficients

Consider the function $$f(x)= -3*x^5 + 4*x^3 - x + 7$$. Answer the following:

Medium

Function Model Construction from Data Set

A data set shows how a quantity V changes over time t as follows: | Time (t) | Value (V) | |-------

Medium

Graph Interpretation and Log Transformation

An experiment records the reaction time R (in seconds) of an enzyme as a power function of substrate

Medium

Impact of Multiplicity on Graph Behavior

Consider the function $$f(x)= (x - 2)^2*(x + 1)$$. Examine how the multiplicity of each zero affects

Medium

Intersection of Functions in Supply and Demand

Consider two functions that model supply and demand in a market. The supply function is given by $$f

Medium

Inverse Analysis of a Shifted Cubic Function

Consider the function $$f(x)= (x-1)^3 + 4$$. Answer the following questions regarding its inverse.

Easy

Inversion of a Polynomial Ratio Function

Consider the function $$f(x)=\frac{x^2-1}{x+2}$$. Answer the following questions regarding its inver

Hard

Investigation of Refund Policy via Piecewise Continuous Functions

A retail store's refund policy is modeled by $$ R(x)=\begin{cases} 10-x & \text{for } x<5, \\ a*x+b

Easy

Linear Function Inverse Analysis

Consider the function $$f(x) = 2*x + 3$$. Answer the following questions concerning its inverse func

Easy

Logarithmic and Exponential Equations with Rational Functions

A process is modeled by the function $$F(x)= \frac{3*e^{2*x} - 5}{e^{2*x}+1}$$, where x is measured

Extreme

Logarithmic Equation Solving in a Financial Model

An investor compares two savings accounts. Account A grows continuously according to the model $$A(t

Medium

Manufacturing Efficiency Polynomial Model

A company's manufacturing efficiency is modeled by a polynomial function. The function, given by $$P

Medium

Marketing Analysis Using Piecewise Polynomial Function

A firm's sales function is modeled by $$ S(x)=\begin{cases} -x^2+6*x & \text{for } x\le3, \\ 2*x+3 &

Easy

Modeling a Real-World Scenario with a Rational Function

A biologist is studying the concentration of a nutrient in a lake. The concentration (in mg/L) is mo

Easy

Modeling Inverse Variation with Rational Functions

An experiment shows that the intensity of a light source varies inversely with the square of the dis

Medium

Piecewise Financial Growth Model

A company’s quarterly growth rate is modeled using a piecewise function. For $$0 \le x \le 4$$, the

Extreme

Piecewise Function Analysis

Consider the piecewise function defined by $$ f(x) = \begin{cases} x^2 - 1, & x < 2 \\ 3*

Medium

Piecewise Polynomial and Rational Function Analysis

A traffic flow model is described by the piecewise function $$f(t)= \begin{cases} a*t^2+b*t+c & \tex

Hard

Polynomial End Behavior and Zeros Analysis

A polynomial function is given by $$f(x)= 2*x^4 - 3*x^3 - 12*x^2$$. This function models a physical

Medium

Polynomial Interpolation and Finite Differences

A quadratic function is used to model the height of a projectile. The following table gives the heig

Easy

Polynomial Long Division and Slant Asymptote

Consider the rational function $$F(x)= \frac{x^3 + 2*x^2 - 5*x + 1}{x - 2}$$. Answer the following p

Hard

Polynomial Transformation Challenge

Consider the function transformation given by $$g(x)= -2*(x+1)^3 + 3$$. Answer each part that follow

Easy

Population Growth Modeling with a Polynomial Function

A regional population (in thousands) is modeled by a polynomial function $$P(t)$$, where $$t$$ repre

Medium

Product Revenue Rational Model

A company’s product revenue (in thousands of dollars) is modeled by the rational function $$R(x)= \f

Medium

Quadratic Function Inverse Analysis with Domain Restriction

Consider the function $$f(x) = x^2 - 4*x + 5$$. Assume that the domain of $$f$$ is restricted so tha

Medium

Rate of Change in a Quadratic Function

Consider the quadratic function $$f(x)= 2*x^2 - 4*x + 1$$. Answer the following parts regarding its

Medium

Rational Function Asymptotes and Holes

A machine’s efficiency is modeled by the rational function $$R(x)= \frac{x^2 - 4}{x^2 - x - 6}$$, wh

Medium

Rational Function Graph and Asymptote Identification

Given the rational function $$R(x)= \frac{x^2 - 4}{x^2 - x - 6}$$, answer the following parts:

Hard

Rational Function: Machine Efficiency Ratios

A machine's efficiency is modeled by the rational function $$E(x) = \frac{x^2 - 9}{x^2 - 4*x + 3}$$,

Medium

Rational Inequalities and Test Intervals

Solve the inequality $$\frac{x-3}{(x+2)(x-1)} < 0$$. Answer the following parts.

Medium

Real-World Inverse Function: Temperature Conversion

The function $$f(x)= \frac{9}{5}*x + 32$$ converts a temperature in degrees Celsius to degrees Fahre

Easy

Real-World Modeling: Population Estimation

A biologist models the population of a species over time $$t$$ (in years) with the polynomial functi

Medium

Solving a Polynomial Inequality

Solve the inequality $$x^3 - 4*x^2 + x + 6 \ge 0$$ and justify your solution.

Medium

Solving Polynomial Inequalities

Consider the polynomial $$p(x)= x^3 - 5*x^2 + 6*x$$. Answer the following parts.

Medium

Use of Logarithms to Solve for Exponents in a Compound Interest Equation

An investment of $$1000$$ grows continuously according to the formula $$I(t)=1000*e^{r*t}$$ and doub

Easy

Zeros and End Behavior in a Higher-Degree Polynomial

Consider the polynomial $$P(x)= (x+1)^2 (x-2)^3 (x-5)$$. Answer the following parts.

Easy
Unit 2: Exponential and Logarithmic Functions

Acoustics and the Logarithmic Scale

The sound intensity level (in decibels) of a sound is given by the function $$f(x)=10*\log_{10}(x)$$

Medium

Analyzing a Logarithmic Function

Consider the logarithmic function $$f(x)= \log_{3}(x-2) + 1$$.

Medium

Analyzing Exponential Function Behavior from a Graph

An exponential function is depicted in the graph provided. Analyze the key features of the function.

Easy

Analyzing Social Media Popularity with Logarithmic Growth

A social media analyst is studying the early-stage growth of a new account's followers. Initially, t

Extreme

Arithmetic Sequence Analysis

Consider an arithmetic sequence with initial term $$a_0$$ and common difference $$d$$. Analyze the c

Easy

Arithmetic Sequence in Savings

A student saves money every month and deposits a fixed additional amount each month, so that her sav

Easy

Bacterial Growth Model and Inverse Function

A bacterial culture grows according to the function $$f(x)=500*2^(x/3)$$, where $$x$$ is time in hou

Medium

Cellular Data Usage Trend

A telecommunications company records monthly cellular data usage (in MB) that appears to grow expone

Medium

Comparing Linear and Exponential Revenue Models

A company is forecasting its revenue growth using two models based on different assumptions. Initial

Medium

Composite Exponential-Logarithmic Functions

Let f(x) = log₃(x) and g(x) = 2·3ˣ. Analyze the following compositions.

Medium

Composite Functions and Their Inverses

For the functions $$f(x) = 2^x$$ and $$g(x) = \log_2(x)$$, analyze their composite functions.

Easy

Composite Functions Involving Exponential and Logarithmic Functions

Let $$f(x) = e^x$$ and $$g(x) = \ln(x)$$. Explore the compositions of these functions and their rela

Easy

Composite Functions: Shifting and Scaling in Log and Exp

Consider the functions $$f(x)=2*e^(x-3)$$ and $$g(x)=\ln(x)+4$$.

Medium

Composition of Exponential and Logarithmic Functions

Given two functions: $$f(x) = 3 \cdot 2^x$$ and $$g(x) = \log_2(x)$$, answer the following parts.

Easy

Compound Interest and Exponential Equations

An investment account is compounded continuously with an initial balance of $$1000$$ and an annual i

Medium

Compound Interest Model with Regular Deposits

An account offers an annual interest rate of 5% compounded once per year. In addition to an initial

Hard

Compound Interest vs. Simple Interest

A financial analyst is comparing two interest methods on an initial deposit of $$10000$$ dollars. On

Medium

Exploring the Properties of Exponential Functions

Analyze the exponential function $$f(x)= 4 * 2^x$$.

Easy

Exponential Decay in Pollution Reduction

The concentration of a pollutant in a lake decreases exponentially according to the model $$f(t)= a\

Medium

Exponential Equations via Logarithms

Solve the exponential equation $$3 * 2^(2*x) = 6^(x+1)$$.

Hard

Exponential Function from Data Points

An exponential function of the form f(x) = a·bˣ passes through the points (2, 12) and (5, 96).

Hard

Exponential Function Transformations

Consider an exponential function defined by f(x) = a·bˣ. A graph of this function is provided in the

Medium

Exponential Function Transformations

Given the exponential function f(x) = 4ˣ, describe the transformation that produces the function g(x

Easy

Exponential Inequalities

Solve the inequality $$3 \cdot 2^x \le 48$$.

Easy

Finding the Inverse of an Exponential Function

Given the exponential function $$f(x)= 4\cdot e^{0.5*x} - 3,$$ find the inverse function $$f^{-1}(

Medium

Fractal Pattern Growth

A fractal pattern is generated such that after its initial creation, each iteration adds an area tha

Medium

General Exponential Equation Solving

Solve the equation $$2^{x}+2^{x+1}=48$$. (a) Factor the equation by rewriting \(2^{x+1}\) in terms

Hard

Inverse and Domain of a Logarithmic Transformation

Given the function $$f(x) = \log_3(x - 2) + 4$$, answer the following parts.

Medium

Inverse Functions in Exponential Contexts

Consider the function $$f(x)= 5^x + 3$$. Analyze its inverse function.

Medium

Inverse Functions of Exponential and Logarithmic Forms

Consider the exponential function $$f(x) = 2 \cdot 3^x$$. Answer the following parts.

Medium

Inverse of a Composite Function

Let $$f(x)= e^x$$ and $$g(x)= \ln(x) + 3$$.

Hard

Investment Growth via Sequences

A financial planner is analyzing two different investment strategies starting with an initial deposi

Medium

Investment Scenario Convergence

An investment yields returns modeled by the infinite geometric series $$S=500 + 500*r + 500*r^2 + \c

Easy

Logarithmic Equation and Extraneous Solutions

Solve the logarithmic equation $$log₂(x - 1) + log₂(3*x + 2) = 3$$.

Hard

Logarithmic Function and Properties

Consider the logarithmic function $$g(x) = \log_3(x)$$ and analyze its properties.

Medium

Logarithmic Function with Scaling and Inverse

Consider the function $$f(x)=\frac{1}{2}\log_{10}(x+4)+3$$. Analyze its monotonicity, find the inver

Easy

Logarithmic Inequalities

Solve the inequality $$\log_{2}(x-1) > 3$$.

Easy

Model Validation and Error Analysis in Exponential Trends

During a chemical reaction, a set of experimental data appears to follow an exponential trend when p

Hard

Parameter Sensitivity in Exponential Functions

Consider an exponential function of the form $$f(x) = a \cdot b^{c x}$$. Suppose two data points are

Hard

Piecewise Exponential and Logarithmic Function Discontinuities

Consider the function defined by $$ f(x)=\begin{cases} 2^x + 1, & x < 3,\\ 5, & x = 3,

Hard

Piecewise Exponential-Log Function in Light Intensity Modeling

A scientist models the intensity of light as a function of distance using a piecewise function: $$

Hard

Population Demographics Model

A small town’s population (measured in hundreds) is recorded over several time intervals. The data i

Medium

Radioactive Decay Analysis

A radioactive substance decays exponentially over time according to the function $$f(t) = a * b^t$$,

Easy

Radioactive Decay and Exponential Functions

A sample of a radioactive substance is monitored over time. The decay in mass is recorded in the tab

Medium

Radioactive Decay and Logarithmic Inversion

A radioactive substance decays such that its mass halves every 8 years. At time \(t=0\), the substan

Medium

Radioactive Decay Modeling

A radioactive substance decays with a half-life of $$5$$ years. A sample has an initial mass of $$80

Medium

Solving Exponential Equations Using Logarithms

Solve the exponential equation $$5\cdot2^{(x-2)}=40$$. (a) Isolate the exponential term and solve f

Easy

Solving Exponential Equations Using Logarithms

Solve for $$x$$ in the exponential equation $$2*3^(x)=54$$.

Easy

Solving Logarithmic Equations with Extraneous Solutions

Solve the logarithmic equation $$\log_2(x - 1) + \log_2(2x) = \log_2(10)$$ and check for any extrane

Hard

System of Exponential Equations

Solve the following system of equations: $$2\cdot 2^x + 3\cdot 3^y = 17$$ $$2^x - 3^y = 1$$.

Medium

Transformations of Exponential Functions

Consider the base exponential function $$f(x)= 3 \cdot 2^x$$. A transformed function is defined by

Easy

Transformations of Exponential Functions

Consider the exponential function $$f(x)= 7 * e^{0.3x}$$. Investigate its transformations.

Easy

Transformed Exponential Equation

Solve the exponential equation $$5 \cdot (1.2)^{(x-3)} = 20$$.

Medium

Translated Exponential Function and Its Inverse

Consider the function $$f(x)=5*2^(x+3)-8$$. Analyze its properties by confirming its one-to-one natu

Easy

Traveling Sales Discount Sequence

A traveling salesman offers discounts on his products following a geometric sequence. The initial pr

Easy

Tumor Growth with Time Dilation Effects

A medical researcher is studying the growth of a tumor, which is modeled by the exponential function

Extreme

Validating the Negative Exponent Property

Demonstrate the negative exponent property using the expression $$b^{-3}$$.

Easy

Weekly Population Growth Analysis

A species exhibits exponential growth in its weekly population. If the initial population is $$2000$

Hard
Unit 3: Trigonometric and Polar Functions

Analysis of a Limacon

Consider the polar function $$r(\theta) = 2 + 3*\cos(\theta)$$.

Extreme

Analysis of Rose Curves

A polar curve is given by the equation $$r=4*\cos(3*θ)$$ which represents a rose curve. Analyze the

Medium

Analyzing a Limacon

Consider the polar function $$r=3+2\cos(\theta)$$.

Hard

Analyzing a Rose Curve

Consider the polar equation $$r=3\,\sin(2\theta)$$.

Medium

Analyzing Damped Oscillations

A mass-spring system oscillates with damping according to the model $$y(t)=10*\cos(2*\pi*t)*e^{-0.5

Hard

Analyzing Phase Shifts in Sinusoidal Functions

Investigate the function $$y=\sin\Big(2*(x-\frac{\pi}{3})\Big)+0.5$$ by identifying its transformati

Medium

Analyzing Sinusoidal Function Rate of Change

A sound wave is modeled by the function $$f(t)=4*\sin(\frac{\pi}{2}*(t-1))+5$$, where t is measured

Hard

Analyzing Sinusoidal Variation in Daylight Hours

A researcher models daylight hours over a year with the function $$D(t) = 5 + 2.5*\sin((2\pi/365)*(t

Medium

Calculating the Area Enclosed by a Polar Curve

Consider the polar curve $$r=2*\cos(θ)$$. Without performing any integral calculations, use symmetry

Hard

Comparing Sinusoidal Function Models

Two models for daily illumination intensity are given by: $$I_1(t)=6*\sin\left(\frac{\pi}{12}(t-4)\r

Medium

Comparing Sinusoidal Functions

Consider the functions $$f(x)=\sin(x)$$ and $$g(x)=\cos\Bigl(x-\frac{\pi}{2}\Bigr)$$.

Easy

Concavity in the Sine Function

Consider the function $$h(x) = \sin(x)$$ defined on the interval $$[0, 2\pi]$$.

Medium

Damped Oscillations: Combining Sinusoidal Functions and Geometric Sequences

A mass-spring system oscillates with decreasing amplitude following a geometric sequence. Its displa

Hard

Equivalent Representations Using Pythagorean Identity

Using trigonometric identities, answer the following:

Medium

Evaluating Inverse Trigonometric Functions

Inverse trigonometric functions such as $$\arcsin(x)$$ and $$\arccos(x)$$ have specific restricted d

Easy

Exploring a Limacon

Consider the polar equation $$r=2+3\,\cos(\theta)$$.

Hard

Exploring Inverse Trigonometric Functions

Consider the inverse sine function $$\arcsin(x)$$, defined for \(x\in[-1,1]\).

Easy

Exploring Rates of Change in Polar Functions

Given the polar function $$r(\theta) = 2 + \sin(\theta)$$, answer the following:

Hard

Graphical Reflection of Trigonometric Functions and Their Inverses

Consider the sine function and its inverse. The graph of an inverse function is the reflection of th

Easy

Graphing and Analyzing a Transformed Sine Function

Consider the function $$f(x)=3\sin\left(2\left(x-\frac{\pi}{4}\right)\right)+1$$. Answer the followi

Medium

Graphing Polar Circles and Roses

Analyze the following polar equations: $$r=2$$ and $$r=3*\cos(2\theta)$$.

Medium

Graphing the Tangent Function and Analyzing Asymptotes

Consider the function $$y = \tan(x)$$. Answer the following:

Medium

Graphing the Tangent Function with Asymptotes

The tangent function, $$f(\theta) = \tan(\theta)$$, exhibits vertical asymptotes where it is undefin

Hard

Interpreting a Sinusoidal Graph

The graph provided displays a function of the form $$g(\theta)=a\sin[b(\theta-c)]+d$$. Use the graph

Medium

Inverse Tangent Composition and Domain

Consider the composite function $$f(x) = \arctan(\tan(x))$$.

Extreme

Inverse Trigonometric Analysis

Consider the inverse sine function $$y = \arcsin(x)$$ which is used to determine angle measures from

Easy

Inverse Trigonometric Function Analysis

Consider the function $$f(x)=\sin(x)$$ defined on the interval $$\left[-\frac{\pi}{2},\frac{\pi}{2}\

Easy

Inverse Trigonometric Function Analysis

Consider the function $$f(x) = 2*\sin(x)$$.

Medium

Limacons and Cardioids

Consider the polar function $$r=1+2*\cos(\theta)$$.

Hard

Modeling Daylight Hours with a Sinusoidal Function

A study in a northern city recorded the number of daylight hours over the course of one year. The ob

Medium

Modeling Daylight Variation

A coastal city records its daylight hours over the year. A sinusoidal model of the form $$D(t)=A*\si

Medium

Modeling Tidal Motion with a Sinusoidal Function

A coastal town uses the model $$h(t)=4*\sin\left(\frac{\pi}{6}*(t-2)\right)+10$$ (with $$t$$ in hour

Medium

Modeling Tides with Sinusoidal Functions

Tidal heights at a coastal location are modeled by the function $$H(t)=2\,\sin\Bigl(\frac{\pi}{6}(t-

Easy

Pendulum Motion and Periodic Phenomena

A pendulum's angular displacement from the vertical is observed to follow a periodic pattern. Refer

Medium

Phase Shift Analysis in Sinusoidal Functions

A sinusoidal function describing a physical process is given by $$f(\theta)=5*\sin(\theta-\phi)+2$$.

Medium

Phase Shift and Frequency Analysis

Analyze the function $$f(x)=\cos\Bigl(4\bigl(x-\frac{\pi}{8}\bigr)\Bigr)$$.

Medium

Phase Shifts and Reflections of Sine Functions

Analyze the relationship between the functions $$f(\theta)=\sin(\theta)$$ and $$g(\theta)=\sin(\thet

Easy

Polar Coordinates Conversion

Convert between Cartesian and polar coordinates and analyze related polar equations.

Medium

Polar Interpretation of Periodic Phenomena

A meteorologist models wind speed variations with direction over time using a polar function of the

Hard

Probability and Trigonometry: Dartboard Game

A circular dartboard is divided into three regions by drawing two radii, forming sectors. One region

Extreme

Proof and Application of Trigonometric Sum Identities

Trigonometric sum identities are a powerful tool in analyzing periodic phenomena.

Extreme

Rate of Change in Polar Functions

For the polar function $$r(\theta)=4+\cos(\theta)$$, investigate its rate of change.

Medium

Rate of Change in Polar Functions

Consider the polar function $$r(\theta)=3+\sin(\theta)$$.

Hard

Reciprocal and Pythagorean Identities

Verify the identity $$1+\cot^2(x)=\csc^2(x)$$ and use it to solve the related trigonometric equation

Easy

Reciprocal Trigonometric Functions: Secant, Cosecant, and Cotangent

Consider the functions $$f(\theta)=\sec(\theta)$$, $$g(\theta)=\csc(\theta)$$, and $$h(\theta)=\cot(

Extreme

Roses and Limacons in Polar Graphs

Consider the polar curves described below and answer the following:

Hard

Seasonal Temperature Modeling

A city's average temperature over the year is modeled by a cosine function. The following table show

Easy

Secant Function and Its Transformations

Investigate the function $$f(\theta)=\sec(\theta)$$ and the transformation $$h(\theta)=2*\sec(\theta

Medium

Secant, Cosecant, and Cotangent Functions Analysis

Consider the reciprocal trigonometric functions. Answer the following:

Hard

Sinusoidal Data Analysis

An experimental setup records data that follows a sinusoidal pattern. The table below gives the disp

Medium

Sinusoidal Function Transformations in Signal Processing

A communications engineer is analyzing a signal modeled by the sinusoidal function $$f(x)=3*\cos\Big

Medium

Sinusoidal Transformation and Logarithmic Manipulation

An electronic signal is modeled by $$S(t)=5*\sin(3*(t-2))$$ and its decay is described by $$D(t)=\ln

Hard

Solving a Basic Trigonometric Equation

Solve the trigonometric equation $$2\cos(x)-1=0$$ for $$0 \le x < 2\pi$$.

Easy

Solving a Trigonometric Equation with Sum and Difference Identities

Solve the equation $$\sin\left(x+\frac{\pi}{6}\right)=\cos(x)$$ for $$0\le x<2\pi$$.

Hard

Solving Trigonometric Equations

A projectile is launched such that its launch angle satisfies the equation $$\sin(2*\theta)=0.5$$. A

Medium

Solving Trigonometric Equations

Solve the trigonometric equation $$\sin(\theta) + \sqrt{3}*\cos(\theta)=1$$.

Hard

Solving Trigonometric Equations in a Survey

In a survey, participants' responses are modeled using trigonometric equations. Solve the following

Easy

Solving Trigonometric Inequalities

Solve the inequality $$\sin(\theta)>\frac{1}{2}$$ for \(\theta\) in the interval [0, 2\pi].

Medium

Special Triangles and Trigonometric Values

Utilize the properties of special triangles to evaluate trigonometric functions.

Easy

Tangent and Cotangent Equation

Consider the trigonometric equation $$\tan(x) - \cot(x) = 0$$ for $$x$$ in the interval $$[0, 2\pi]$

Medium

Tangent Function Shift

Consider the function $$f(x) = \tan\left(x - \frac{\pi}{6}\right)$$.

Medium

Transformation and Reflection of a Cosine Function

Consider the function $$g(x) = -2*\cos\Bigl(\frac{1}{2}(x + \pi)\Bigr) + 3$$.

Medium

Unit Circle and Special Triangle Values

Using the unit circle and properties of special triangles, answer the following.

Easy

Unit Circle and Special Triangles

Consider the unit circle and the properties of special right triangles. Answer the following for a 4

Easy

Verifying a Trigonometric Identity

Demonstrate that the identity $$\sin^2(x)+\cos^2(x)=1$$ holds for all real numbers \(x\).

Easy

Vibration Analysis

A mechanical system oscillates with displacement given by $$d(t) = 5*\cos(4t - \frac{\pi}{3})$$ (in

Medium
Unit 4: Functions Involving Parameters, Vectors, and Matrices

Acceleration in a Vector-Valued Function

Given the particle's position vector $$\mathbf{r}(t) = \langle t^2, t^3 - 3*t \rangle$$, answer the

Medium

Analyzing a Piecewise Function Involving Absolute Value and Removability

Consider the function $$F(x)=\begin{cases} \frac{|x-2|(x+1) - (x-2)(x+1)}{x-2} & \text{if } x \neq 2

Hard

Average Rate of Change in Parametric Motion

A projectile is launched and its motion is modeled by $$x(t)=3*t+1$$ and $$y(t)=16-4*t^2$$, where $$

Medium

Average Rate of Change in Parametric Motion

For the parametric functions $$x(t) = t^3 - 3*t + 2$$ and $$y(t) = 2*t^2 - t$$ defined for $$t \in [

Medium

Circular Motion and Transformation

The motion of a particle is given by the parametric equations $$x(t)=3\cos(t)$$ and $$y(t)=3\sin(t)$

Easy

Circular Motion Parametrization

Consider a particle moving along a circular path defined by the parametric equations $$x(t)= 5*\cos(

Medium

Complex Parametric and Matrix Analysis in Planar Motion

A particle moves in the plane according to the parametric equations $$x(t)=3\cos(t)+2*t$$ and $$y(t)

Extreme

Composition of Linear Transformations

Let $$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$ and $$B = \begin{pmatrix} 3 & 0 \\ 1 & 2 \e

Medium

Composition of Linear Transformations

Let two linear transformations in \(\mathbb{R}^2\) be represented by the matrices $$E=\begin{pmatrix

Hard

Composition of Transformations and Inverses

Let $$A=\begin{bmatrix}2 & 3\\ 1 & 4\end{bmatrix}$$ and consider the linear transformation $$L(\vec{

Extreme

Computing Average Rate of Change in Parametric Functions

Consider a particle moving with its position given by $$x(t)=t^2 - 4*t + 3$$ and $$y(t)=2*t + 1$$. A

Medium

Discontinuity Analysis in an Implicitly Defined Function

Consider the circle defined by $$x^2+y^2=4$$. A piecewise function for $$y$$ is attempted as $$y(x)=

Medium

Discontinuity in a Function Modeling Transition between States

A system's state is modeled by the function $$S(x)=\begin{cases} \frac{x^2-16}{x-4} & \text{if } x \

Medium

Dot Product, Projection, and Angle Calculation

Let $$\mathbf{u}=\langle4, 1\rangle$$ and $$\mathbf{v}=\langle2, 3\rangle$$.

Medium

Eliminating the Parameter in an Implicit Function

A curve is defined by the parametric equations $$x(t)=t+1$$ and $$y(t)=t^2-1$$.

Medium

Evaluating Limits in a Parametrically Defined Motion Scenario

A particle’s motion is given by the parametric equations: $$x(t)=\begin{cases} \frac{t^2-9}{t-3} & \

Medium

Finding Angle Between Vectors

Given vectors $$\mathbf{a}=\langle 1,2 \rangle$$ and $$\mathbf{b}=\langle 3,4 \rangle$$, determine t

Medium

FRQ 1: Parametric Path and Motion Analysis

Consider the parametric function $$f(t)=(x(t),y(t))$$ defined by $$x(t)=t^2-4*t+3$$ and $$y(t)=2*t-1

Medium

FRQ 3: Linear Parametric Motion - Car Journey

A car travels along a linear path described by the parametric equations $$x(t)=3+2*t$$ and $$y(t)=4-

Easy

FRQ 10: Unit Vectors and Direction

Consider the vector $$\textbf{w}=\langle -5, 12 \rangle$$.

Easy

FRQ 11: Matrix Inversion and Determinants

Let matrix $$A=\begin{bmatrix}3 & 4\\2 & -1\end{bmatrix}$$.

Medium

FRQ 15: Composition of Linear Transformations

Consider two linear transformations represented by the matrices $$A=\begin{bmatrix}2 & 0\\1 & 3\end{

Hard

FRQ 19: Parametric Functions and Matrix Transformation

A particle's motion is given by the parametric equations $$f(t)=(t, t^2)$$ for $$t\in[0,2]$$. A line

Hard

Graphical Analysis of Parametric Motion

A particle moves in the plane with its position defined by the functions $$x(t)= t^2 - 2*t$$ and $$y

Easy

Graphical and Algebraic Analysis of a Function with a Removable Discontinuity

Consider the function $$g(x)=\begin{cases} \frac{\sin(x) - \sin(0)}{x-0} & \text{if } x \neq 0, \\ 1

Easy

Hyperbola Parametrization Using Trigonometric Functions

Consider the hyperbola defined by $$\frac{x^2}{16} - \frac{y^2}{9} = 1$$. Answer the following:

Hard

Implicit Function Analysis

Consider the implicitly defined equation $$x^2 + y^2 - 4*x + 6*y - 12 = 0$$. Answer the following:

Easy

Inverse and Determinant of a Matrix

Consider the matrix $$A=\begin{pmatrix}4 & 3 \\ 2 & 1\end{pmatrix}$$.

Easy

Inverse and Determinant of a Matrix

Let the 2×2 matrix be given by $$A= \begin{pmatrix} a & 2 \\ 3 & 4 \end{pmatrix}$$. Answer the follo

Easy

Inverse Matrix and Transformation of the Unit Square

Given the transformation matrix $$A=\begin{pmatrix}3 & 1 \\ 2 & 2\end{pmatrix}$$ applied to the unit

Extreme

Linear Transformation and Area Scaling

Consider the linear transformation L on \(\mathbb{R}^2\) defined by the matrix $$A= \begin{pmatrix}

Medium

Logarithmic and Exponential Parametric Functions

A particle’s position is defined by the parametric equations $$x(t)= \ln(1+t)$$ and $$y(t)= e^{1-t}$

Medium

Matrices as Models for Population Dynamics

A population of two species is modeled by the transition matrix $$P=\begin{pmatrix} 0.8 & 0.1 \\ 0.2

Hard

Matrix Modeling in Population Dynamics

A biologist is studying a species with two age classes: juveniles and adults. The population dynamic

Extreme

Matrix Modeling of State Transitions

In a two-state system, the transition matrix is given by $$T=\begin{pmatrix}0.8 & 0.2 \\ 0.3 & 0.7\e

Extreme

Matrix Multiplication and Non-Commutativity

Let the matrices be defined as $$A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$ and $$B=\begin{pma

Medium

Matrix Multiplication and Properties

Let $$A=\begin{pmatrix}1 & 2 \\ 3 & 4\end{pmatrix}$$ and $$B=\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmat

Hard

Matrix Transformation in Graphics

In computer graphics, images are often transformed using matrices. Consider the transformation matri

Hard

Modeling Linear Motion Using Parametric Equations

A car travels along a straight road. Its position in the plane is given by the parametric equations

Easy

Modeling Particle Trajectory with Parametric Equations

A particle’s motion is described by the parametric equations $$x(t)=3*t+1$$ and $$y(t)=-2*t^2+8*t-1$

Medium

Modeling State Transitions with a Transition Matrix (Probability-Based Scenario)

A small business models its customer behavior between two states: Regular and Occasional. The transi

Hard

Parameter Transition in a Piecewise-Defined Function

Consider the function $$g(t)=\begin{cases} \frac{t^3-1}{t-1} & \text{if } t \neq 1, \\ 5 & \text{if

Easy

Parametric Curve with Logarithmic and Exponential Components

A curve is described by the parametric equations $$x(t)= t + \ln(t)$$ and $$y(t)= e^{t} - 3$$ for t

Medium

Parametric Function and Its Inverse: Parabolic Function

Consider the function $$f(x)= (x-1)^2 + 2$$ for x \(\ge\) 1. (a) Provide a parametrization for the

Hard

Parametric Representation of a Parabola

Consider the parabola defined by $$y= 2*x^2 + 3$$. Answer the following:

Easy

Parametric Representation of an Ellipse

An ellipse is defined by the equation $$\frac{(x-3)^2}{4} + \frac{(y+2)^2}{9} = 1.$$ (a) Write a

Easy

Parametric Representation of an Implicit Curve

The equation $$x^2+y^2-6*x+8*y+9=0$$ defines a curve in the plane. Analyze this curve.

Easy

Parametric Representation of an Implicitly Defined Function

Consider the implicitly defined curve $$x^2+y^2=16$$. A common parametric representation is given by

Easy

Parametric Table and Graph Analysis

Consider the parametric function $$f(t)= (x(t), y(t))$$ where $$x(t)= t^2$$ and $$y(t)= 2*t$$ for $$

Easy

Parametrization of an Ellipse

Consider the ellipse defined by $$\frac{(x-2)^2}{9} + \frac{(y+1)^2}{4} = 1$$. Answer the following:

Easy

Parametrization of an Ellipse for a Racetrack

A racetrack is shaped like the ellipse given by $$\frac{(x-1)^2}{16}+\frac{(y+2)^2}{9}=1$$.

Medium

Particle Motion from Parametric Equations

A particle moves in the plane with position functions $$x(t)=t^2-2*t$$ and $$y(t)=4*t-t^2$$, where $

Medium

Particle Motion Through Position and Velocity Vectors

A particle’s position is given by the vector function $$\vec{p}(t)= \langle 3*t^2 - 2*t,\, t^3 \rang

Medium

Population Transition Matrix Analysis

A population dynamics model is represented by the transition matrix $$T=\begin{pmatrix}0.7 & 0.2 \\

Medium

Resolving Discontinuities in an Elliptical Parameterization

An ellipse is parameterized by the following equations: $$x(\theta)=\begin{cases} 5\cos(\theta) & \t

Easy

Rotation of a Force Vector

A force vector is given by \(\vec{F}= \langle 10, 5 \rangle\). This force is rotated by 30° counterc

Easy

Table-Driven Analysis of a Piecewise Defined Function

A researcher defines a function $$h(x)=\begin{cases} \frac{x^2 - 4}{x-2} & \text{if } x < 2, \\ x+3

Medium

Transformation Matrices in Computer Graphics

A transformation matrix $$A = \begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix}$$ is applied to points in

Medium

Transition from Parametric to Explicit Function

A curve is defined by the parametric equations $$x(t)=\ln(t)$$ and $$y(t)=t+1$$, where $$t>0$$. Answ

Medium

Transition Matrices in Dynamic Models

A system with two states is modeled by the transition matrix $$T=\begin{bmatrix}0.8 & 0.3\\ 0.2 & 0.

Hard

Trigonometric Function Analysis

Consider the trigonometric function $$f(x)= 2*\tan(x - \frac{\pi}{6})$$. Without using a calculator,

Medium

Vector Analysis in Projectile Motion

A soccer ball is kicked so that its velocity vector is given by $$\mathbf{v}=\langle5, 7\rangle$$ (i

Easy

Vector Components and Magnitude

Given the vector $$\vec{v}=\langle 3, -4 \rangle$$:

Easy

Vector Operations

Given the vectors $$\mathbf{u} = \langle 3, -2 \rangle$$ and $$\mathbf{v} = \langle -1, 4 \rangle$$,

Easy

Vector Operations in the Plane

Let $$\vec{u}= \langle 3, -2 \rangle$$ and $$\vec{v}= \langle -1, 4 \rangle$$. Perform the following

Easy

Vector Scalar Multiplication

Given the vector $$\mathbf{w} = \langle -2, 5 \rangle$$ and the scalar $$k = -3$$, answer the follow

Easy

Vectors in the Context of Physics

A force vector applied to an object is given by $$\vec{F}=\langle 5, -7 \rangle$$ and the displaceme

Medium

Trusted by millions

Everyone is relying on Knowt, and we never let them down.

3M +Student & teacher users
5M +Study notes created
10M + Flashcards sets created
Victoria Buendia-Serrano
Victoria Buendia-SerranoCollege freshman
Knowt’s quiz and spaced repetition features have been a lifesaver. I’m going to Columbia now and studying with Knowt helped me get there!
Val
ValCollege sophomore
Knowt has been a lifesaver! The learn features in flashcards let me find time and make studying a little more digestible.
Sam Loos
Sam Loos12th grade
I used Knowt to study for my APUSH midterm and it saved my butt! The import from Quizlet feature helped a ton too. Slayed that test with an A!! 😻😻😻

Need to review before working on AP Precalculus FRQs?

We have over 5 million resources across various exams, and subjects to refer to at any point.

Browse top AP materials

We’ve found the best flashcards & notes on Knowt.

Tips from Former AP Students

FAQ

We thought you might have some questions...

Where can I find practice free response questions for the AP Precalculus exam?
The free response section of each AP exam varies slightly, so you’ll definitely want to practice that before stepping into that exam room. Here are some free places to find practice FRQs :
  • Of course, make sure to run through College Board's past FRQ questions!
  • Once you’re done with those go through all the questions in the AP PrecalculusFree Response Room. You can answer the question and have it grade you against the rubric so you know exactly where to improve.
  • Reddit it also a great place to find AP free response questions that other students may have access to.
How do I practice for AP AP Precalculus Exam FRQs?
Once you’re done reviewing your study guides, find and bookmark all the free response questions you can find. The question above has some good places to look! while you’re going through them, simulate exam conditions by setting a timer that matches the time allowed on the actual exam. Time management is going to help you answer the FRQs on the real exam concisely when you’re in that time crunch.
What are some tips for AP Precalculus free response questions?
Before you start writing out your response, take a few minutes to outline the key points you want to make sure to touch on. This may seem like a waste of time, but it’s very helpful in making sure your response effectively addresses all the parts of the question. Once you do your practice free response questions, compare them to scoring guidelines and sample responses to identify areas for improvement. When you do the free response practice on the AP Precalculus Free Response Room, there’s an option to let it grade your response against the rubric and tell you exactly what you need to study more.
How do I answer AP Precalculus free-response questions?
Answering AP Precalculus free response questions the right way is all about practice! As you go through the AP AP Precalculus Free Response Room, treat it like a real exam and approach it this way so you stay calm during the actual exam. When you first see the question, take some time to process exactly what it’s asking. Make sure to also read through all the sub-parts in the question and re-read the main prompt, making sure to circle and underline any key information. This will help you allocate your time properly and also make sure you are hitting all the parts of the question. Before you answer each question, note down the key points you want to hit and evidence you want to use (where applicable). Once you have the skeleton of your response, writing it out will be quick, plus you won’t make any silly mistake in a rush and forget something important.