Results for "bone marrow"

Filters

Flashcards

Bone Marrow 2
Updated 2d ago
flashcards Flashcards (30)
09a: Bone Marrow Histo
Updated 5d ago
flashcards Flashcards (17)
System Interactions in Animals Tools Finish System Interactions in Animals The human body is made of many different organ systems. Each system performs unique functions for the body, but the systems also interact with each other to perform more complex functions. Major Organ Systems Body Systems In humans, cells, tissues, and organs group together to form organ systems. These systems each perform different functions for the human body. The major organ systems and their functions in humans include: The Nervous System — The nervous systems consists of two parts. The central nervous system consists of the brain and spinal cord, while the peripheral nervous system consists of nerves that connect the central nervous system to other parts of the body. The brain plays an important role in interpreting the information picked up by the sensory system. It helps in producing a precise response to the stimuli. It also controls bodily functions such as movements, thoughts, speech, and memory. The brain also controls many processes related to homeostasis in the body. The spinal cord connects to the brain through the brainstem. From the brainstem, the spinal cord extends to all the major nerves in the body. The spinal cord is the origin of spinal nerves that branch out to various body parts. These nerves help in receiving and transmitting signals from various body parts. The spinal cord helps in reflex actions of the body The smallest unit of the nervous system is the nerve cell, or neuron. Neurons communicate with each other and with other cells by producing and releasing electrochemical signals known as nerve impulses. Neurons consist of the cell body, the dendrites, and the axon. The cell body consists of a nucleus and cytoplasm. Dendrites are specialized branch-like structures that help in conducting impulses to and from the various body parts. Axons are long, slender extensions of the neuron. Each neuron possesses just a single axon. Its function is to carry the impulses away from the cell body to other neurons. The Circulatory System — The circulatory (or cardiovascular) system is composed of the heart, arteries, veins, and capillaries. The circulatory system is responsible for transporting blood to and from the lungs so that gas exchange can take place. As the circulatory system pumps blood throughout the body, dissolved nutrients and wastes are also delivered to their destinations. The heart is a muscular organ roughly the size of an adult human's closed fist. It is present behind the breastbone, slightly to the left. It consists of four chambers: right atrium, left atrium, right ventricle, and left ventricle. The heart receives deoxygenated blood from the body and pumps this blood to the lugs, where it is oxygenated. The oxygen-rich blood reenters the heart and is then pumped back through the body. The circulatory system is responsible for transporting blood to and from the lungs so that gas exchange can take place. As the circulatory system pumps blood throughout the body, dissolved nutrients and wastes are also delivered to their destinations. Blood circulation takes place through blood vessels. Blood vessels are tubular structures that form a network within the body and transport blood to each tissue. There are three major types of blood vessels: veins, arteries, and capillaries. Veins carry deoxygenated blood from the body to the heart, except for pulmonary veins, which carry oxygenated blood from the lungs to the heart. Arteries carry oxygenated blood from the heart to different organs, except for the pulmonary artery, which carries deoxygenated blood from the heart to the lungs. The arteries branch out to form capillaries. These capillaries are thin-walled vessels through which nutrients and wastes are exchanged with cells. The Respiratory System — The main structures of the respiratory system are the trachea (windpipe), the lungs, and the diaphragm. When the diaphragm contracts, it creates a vacuum in the lungs that causes them to fill with air. During this inhalation, oxygen diffuses into the circulatory system while carbon dioxide diffuses out into the air that will be exhaled. The trachea branches out into two primary bronchi. Each bronchus is further divided into numerous secondary bronchi. These secondary bronchi further branch into tertiary bronchi. Finally, each tertiary bronchus branches into numerous bronchioles. Each bronchiole terminates into a tiny, sac-like structure known as an alveolus. The walls of each alveolus are thin and contain numerous blood capillaries. The process of gaseous exchange occurs in these alveoli. The diaphragm is a dome-shaped muscle situated at the lower end of the rib cage. It separates the abdominal cavity from the chest cavity. During inhalation, the diaphragm contracts, and the chest cavity enlarges, creating a vacuum that allows air to be drawn in. This causes the alveoli in the lungs to expand with air. During this process, oxygen diffuses into the circulatory system while carbon dioxide diffuses out into the air that will be exhaled. On the other hand, expansion of the diaphragm causes exhalation of air containing carbon dioxide. The Digestive System — The digestive system consists of the mouth, stomach, small intestine, large intestine, and anus. It is responsible for taking in food, digesting it to extract energy and nutrients that cells can use to function, and expelling the remaining waste material. Mechanical and chemical digestion takes place in the mouth and stomach, while absorption of nutrients and water takes place in the intestines. The digestive system begins at the mouth, where food is taken in, and ends at the anus, where waste is expelled. The food taken into the mouth breaks into pieces by the grinding action of the teeth. Carbohydrate digestion starts in the mouth with the breakdown of carbohydrates into simple sugars with the help of salivary enzymes. The chewed food, known as a bolus, enters the stomach through the esophagus. The bolus mixes with acids and enzymes released by the stomach. Protein digestion starts in the stomach as proteins are broken down into peptides. This partially digested food is known as chyme. Chyme enters the small intestine and mixes with bile, a substance secreted by the liver, along with enzymes secreted by the pancreas. The digestion of fats starts in the small intestine as bile and pancreatic enzymes break down fats into fatty acids. The surface of the small intestine consists of hair-like projections known as villi. These villi help in absorbing nutrients from the digested food. The digested food enters the large intestine, or colon, where water and salts are reabsorbed. Any undigested food is expelled out of the body as waste. The Skeletal System — The skeletal system is made up of over 200 bones. It protects the body's internal organs, provides support for the body and gives it shape, and works with the muscular system to move the body. In addition, bones can store calcium and produce red and white blood cells. The Muscular System — The muscular system includes more than 650 tough, elastic pieces of tissue. The primary function of any muscle tissue is movement. This includes the movement of blood through the arteries, the movement of food through the digestive tract, and the movement of arms and legs through space. Skeletal muscles relax and contract to move the bones of the skeletal system. The Excretory System — The excretory system removes excess water, dangerous substances, and wastes from the body. The excretory system also plays an important role in maintaining body equilibrium, or homeostasis. The human excretory system includes the lungs, sweat glands in the skin, and the urinary system (such as the kidneys and the bladder). The body uses oxygen for metabolic processes. Oxygen metabolism results in the production of carbon dioxide, which is a waste matter. The lungs expel carbon dioxide through the mouth and nose. The liver converts toxic metabolic wastes, such as ammonia, into less harmful susbtances. Ammonia is converted to urea, which is then excreted in the urine. The skin also expels urea and small amounts of ammonia through sweat. The skin is embedded with sweat glands. These glands secrete sweat, a solution of water, salt, and wastes. The sweat rises to the skin's surface, where it evaporates. The skin maintains homeostasis by producing sweat in hot environments. Sweat production cools and prevents excessive heating of the body. Each kidney contains about a million tiny structures called nephrons, which filter the blood and collect waste products, such as urea, salts, and excess water that go on to become urine. The Endocrine System — The endocrine system is involved with the control of body processes such as fluid balance, growth, and sexual development. The endocrine system controls these processes through hormones, which are produced by endocrine glands. Some endocrine glands include the pituitary gland, thyroid gland, parathyroid gland, adrenal glands, thymus gland, ovaries in females, and testes in males. The Immune System — The immune system is a network of cells, tissues, and organs that defends the body against foreign invaders. The immune system uses antibodies and specialized cells, such as T-cells, to defend the body from microorganisms that cause disease. The Reproductive System — The reproductive system includes structures, such as the uterus and fallopian tubes in females and the penis and testes in males, that allow humans to produce new offspring. The reproductive system also controls certain hormones in the human body that regulate the development of sexual characteristics and determine when the body is able to reproduce. The Integumentary System — The integumentary system is made up of a person's skin, hair, and nails. The skin acts as a barrier to the outside world by keeping moisture in the body and foreign substances out of the body. Nerves in the skin act as an interface with the outside world, helping to regulate important aspects of homeostasis, such as body temperature. Interacting Organ Systems The organ systems work together to perform complex bodily functions. The functions of regulation, nutrient absorption, defense, and reproduction are only possible because of the interaction of multiple body systems. Regulation All living organisms must maintain homeostasis, a stable internal environment. Organisms maintain homeostasis by monitoring internal conditions and making adjustments to the body systems as necessary. For example, as body temperature increases, skin receptors and receptors in a region of the brain called the hypothalamus sense the change. The change triggers the nervous system to send signals to the integumentary and circulatory systems. These signals cause the skin to sweat and blood vessels close to the surface of the skin to dilate, actions which dispel heat to decrease body temperature. Both the nervous system and the endocrine system are typically involved in the maintenance of homeostasis. The nervous system receives and processes stimuli, and then it sends signals to body structures to coordinate a response. The endocrine system helps regulate the response through the release of hormones, which travel through the circulatory system to their site of action. For example, the endocrine system regulates the level of sugar in the blood by the release of the hormones insulin, which stimulates uptake of glucose by cells, and glucagon, which stimulates the release of glucose by the liver. The nervous and endocrine systems interact with the excretory system in the process of osmoregulation, the homeostatic regulation of water and fluid balance in the body. The excretory system expels excess water, salts, and waste products. The excretion of excessive amounts of water can be harmful to the body because it reduces blood pressure. If the nervous system detects a decrease in blood pressure, it stimulates the endocrine system to release antidiuretic hormone. This hormone decreases the amount of water released by the kidneys to ensure appropriate blood pressure. Appropriate levels of carbon dioxide in the blood are also maintained by homeostatic mechanisms that involve several organ systems. Excess carbon dioxide, a byproduct of cellular respiration, can be harmful to an organism. As blood circulates throughout the body, it picks up carbon dioxide waste from cells and transports it to the lungs, where it is exhaled while fresh oxygen is inhaled. If the concentration of carbon dioxide in the blood increases above a certain threshold, the nervous system directs the lungs to increase their respiration rate to remove the excess carbon dioxide, which ensures that the levels of carbon dioxide in the blood are maintained at appropriate levels. In this way, the circulatory, respiratory, and nervous systems work together to limit the level of carbon dioxide in the blood. Nutrient Absorption To absorb nutrients from food, the nervous, digestive, muscular, excretory, and circulatory systems all interact. The nervous system controls the intake of food and regulates the muscular action of chewing, which mechanically breaks down food. As food travels through the stomach and intestines, the digestive system structures release enzymes to stimulate its chemical breakdown. At the same time, the muscular action, called peristalsis, of the muscles in the wall of the stomach help churn the food and push it through the digestive tract. In the intestines, nutrients from food travel across the surfaces of the villi. The nutrients are then picked up by the blood, and the circulatory system transports the nutrients throughout the cells of the body. The endocrine system releases hormones, such as insulin, that control the rate at which certain body cells use nutrients. Any excess minerals, such as calcium, in the blood are deposited in and stored by the skeletal system. Waste products produced by the use of nutrients, as well as the leftover solid waste from the digestion of food, exit the body through the excretory system. Throughout the process of nutrient absorption, the nervous system controls the muscles involved in digestion, circulation, and excretion. Defense Several body systems interact to defend the body from external threats. The body's first line of defense is the integumentary system, which provide a physical barrier that prevents pathogens from entering the body. The skin of the integumentary system also contains receptors for pain, temperature, and pressure. If an unpleasant stimulus is encountered, these receptors send signals to the central nervous system. In response, the central nervous system sends commands to the muscles to move the body part away from the stimulus. In this way, the integumentary, nervous, and muscular systems interact to prevent damage to the body. In the event of a break in the skin, the nervous, immune, lymphatic, and circulatory systems work together to repair the wound and protect the body from pathogens. When the skin is broken, specialized blood cells called platelets form a clot to stop the bleeding. These platelets also release chemicals that travel through the circulatory system and recruit cells, like immune system cells, to repair the wound. These immune cells, or white blood cells, are transported by the circulatory and lymphatic systems to the site of the wound, where they identify and destroy potentially pathogenic cells to prevent an infection. Some lymphocytes, white blood cells produced by the lymphatic system, also produce antibodies to neutralize specific pathogens. All of the white blood cells involved in the body's response were originally produced in the bone marrow of the skeletal system. If an infection does occur
Updated 7d ago
flashcards Flashcards (10)
BONE MARROW AND BLOOD
Updated 23d ago
flashcards Flashcards (30)
biology 2.1Unit 2.1: Mitosis and Meiosis Introduction By the end of this section, you should be able to: Define a chromosome. Define DNA as the genetic material. Define genes. Describe the structure of chromosomes. Describe the components of DNA. Define mitosis and describe its stages. Define meiosis and describe its stages. Relate the events of meiosis to the formation of sex cells. Compare mitosis and meiosis. Chromosomes, Genes, and DNA Almost all the cells of your body—except for mature red blood cells—contain a nucleus, which acts as the control center of the cell. The nucleus holds all the information needed to make a new cell and, ultimately, a new individual. Inside the nucleus are chromosomes, thread-like structures that store genetic information passed from parents to offspring. Chromosomes are made up of DNA (deoxyribonucleic acid), a molecule that carries the instructions needed to make all the proteins in your body. Many of these proteins are enzymes, which control the production of other chemicals and affect everything about how your body functions. Each species has a specific number of chromosomes: Humans have 46 chromosomes (23 pairs). Tomatoes have 24 chromosomes (12 pairs). Elephants have 56 chromosomes (28 pairs). Half of your chromosomes come from your mother, and the other half from your father. These chromosomes are arranged in homologous pairs, meaning they contain matching sets of genes. A karyotype is a special photograph that arranges chromosomes into their pairs. In humans, 22 pairs of chromosomes are called autosomes, which control most body functions. The 23rd pair is the sex chromosomes, which determine whether you are male or female: Females have two X chromosomes (XX). Males have one X and one Y chromosome (XY). DNA Structure DNA is a long, twisted molecule shaped like a double helix (a spiraled ladder). Each strand of DNA is made up of smaller molecules called nucleotides, which consist of: A phosphate group A sugar (deoxyribose) A nitrogen base The four nitrogen bases in DNA are: Adenine (A) → Always pairs with Thymine (T) Cytosine (C) → Always pairs with Guanine (G) Genes are small segments of DNA that carry instructions for making proteins. The sequence of these bases acts like a biological code, directing the cell to create specific proteins. In 1953, James Watson and Francis Crick, using data from Rosalind Franklin’s X-ray photographs, discovered the double-helix structure of DNA. Their discovery led to a huge increase in genetic research, including the Human Genome Project, which mapped all human genes. Mitosis (Cell Division for Growth and Repair) All body cells (somatic cells) divide using mitosis, a type of cell division that creates two identical daughter cells. Mitosis is essential for: Growth (producing new cells). Tissue repair (replacing damaged or old cells). Asexual reproduction (producing offspring with identical DNA). Stages of Mitosis Interphase The cell prepares for division by copying its DNA. Chromosomes are not visible under a microscope. Prophase Chromosomes condense and become visible. The nuclear membrane breaks down. Metaphase Chromosomes line up in the center of the cell. Spindle fibers attach to each chromosome. Anaphase The spindle fibers pull the sister chromatids apart to opposite ends of the cell. Telophase A new nuclear membrane forms around each set of chromosomes. The cell is almost ready to split. Cytokinesis The cytoplasm divides, forming two identical daughter cells. Mitosis is constantly occurring in areas like your skin and bone marrow, where new cells are needed regularly. Meiosis (Cell Division for Reproduction) Unlike mitosis, meiosis occurs only in the reproductive organs (testes in males, ovaries in females) and produces gametes (sperm and egg cells). Gametes have half the number of chromosomes (haploid, n=23) so that when fertilization occurs, the new cell has the correct chromosome number (diploid, 2n=46). Stages of Meiosis Meiosis consists of two rounds of cell division, resulting in four non-identical cells. Meiosis I: Prophase I – Chromosomes pair up and exchange genetic material (crossing over). Metaphase I – Chromosome pairs line up in the center of the cell. Anaphase I – Chromosome pairs separate and move to opposite ends of the cell. Telophase I & Cytokinesis – The cell splits into two haploid daughter cells. Meiosis II (similar to mitosis): 5. Prophase II – Chromosomes condense again. 6. Metaphase II – Chromosomes line up in the center. 7. Anaphase II – Sister chromatids separate and move to opposite sides. 8. Telophase II & Cytokinesis – Four unique haploid gametes are formed. Each gamete is genetically different due to crossing over and random chromosome distribution. Mitosis vs. Meiosis: Key Differences Importance of Mitosis and Meiosis Mitosis ensures that cells grow, repair damage, and replace old cells. Meiosis allows genetic diversity, which is essential for evolution and survival. Summary Chromosomes carry genetic information in the form of DNA. Genes are sections of DNA that code for proteins. Mitosis produces two identical daughter cells for growth and repair. Meiosis creates four non-identical sex cells for reproduction. Mitosis ensures genetic stability, while meiosis introduces genetic diversity
Updated 26d ago
flashcards Flashcards (6)
Know the relationship between molecular weight and rate of diffusion The rate of diffusion is inversely proportional to the molecular weight Small weight-fast diffusion; heavy weight-slow diffusion Identify RBC’s in various solution and determine tonicity Tonicity - the ability of an extracellular solution to make water move into or out of a cell by osmosis If a cell is placed in a hypertonic solution, there will be a net flow of water out of the cell, and the cell will lose volume (shrink). A solution will be hypertonic to a cell if its solute concentration is higher than that inside the cell, and the solutes cannot cross the membrane. If a cell is placed in a hypotonic solution, there will be a net flow of water into the cell, the cell will gain volume (bigger). If the solute concentration outside the cell is lower than inside the cell, then solutes cannot cross the membrane, then the solution is hypotonic to the cell. If a cell is placed in an isotonic solution, there will be no set flow of water into or out of the cell, and the cell’s volume will remain stable. If the solute concentration outside the cell is the same as inside the cell, and the solutes cannot cross the membrane, the solution is isotonic to the cell. Homeostatic feedback loop for respiratory rate, heart rate and temperature Respiratory Rate: Stimulus : The level of carbon dioxide (CO2) in the blood increases (often due to exercise or hypoventilation) . Receptors: Chemoreceptors in the medulla oblongata, carotid arteries, and aortic arch detect changes in blood pH and CO2 levels Control Center: The medulla oblongata processes this information Effectors: Respiratory muscles (diaphragm and intercostal) adjust breathing rate and depth Response: Increased respiratory rate removes CO2 and increases O2 intake, restoring normal pH and gas levels. Heart Rate: Stimulus : Changes in blood pressure, O2, CO2, or pH levels Receptors: Baroreceptors (detect blood pressure changes) in the carotid sinus and aortic arch; chemoreceptors monitor blood chemistry Control Center: The medulla oblongata (cardiac center) processes signals Effectors : The autonomic nervous system (ANS) adjusts heart rate through the sympathetic nervous system (increases heart rate) or parasympathetic nervous system (decreases heart rate) Response : Heart rate increases during low O2 or low blood pressure (to circulate oxygen) and decreases when homeostasis is restored. Temperature Regulation Stimulus: Changes in body temperature (hyperthermia or hypothermia) Receptors: Thermoreceptors in the skin and hypothalamus detect temperature fluctuations. Control Center: The hypothalamus processes this information and signals effectors Effectors and Responses: If too hot: Blood vessels dilate (vasodilation) to release heat, and sweat glands produce sweat for cooling If too cold: Blood vessels constrict (vasoconstriction) to retain heat, and shivering generates warmth. Steps of a generic homeostatic feedback loop Stimulus : A change in the internal or external environment that disrupts homeostasis (eg. temperature change, pH levels, blood sugar levels) Sensor (Receptor) : Specialized cells or receptors detect the change and send information to the control center. Control Center (Integrator): Often the brain or endocrine glands, this component processes the information from the sensors and determines the appropriate response to restore balance. Effector: This component carries out the response to the stimulus as dictated by the control center. Effectors can be muscles or glands that help to counteract the change. Response: The action taken by the effectors to restore homeostasis. This could involve increasing or decreasing a physiological process (e.g. sweating to cool down or shivering to warm up) Feedback: The results of the response are monitored. If homeostasis is restored, the system maintains its state; if not, the loop may repeat, continuing to adjust until balance is achieved. How to evaluate data to determine the set point, error, and disturbance Identify the set point The set point is the optimal level or range that the system aims to maintain. To determine the set point: Gather baseline data: Collect data over a period to understand the normal range for the variable in question (e.g. body temp., BP, blood glucose levels) Analyze Trends: Look for patterns in the data to identify the average or median value that represents the stable condition of the system. Consult Literature: Reference established physiological norms or previous studies to confirm the typical set point for the variable. Assess Disturbance A disturbance is any factor or event that causes a deviation from the set point. To evaluate disturbances: Identify External and Internal Factors: Analyze the data for any external influences (e.g. environmental changes, dietary habits) or internal changes (e.g. illness, stress) that might have impacted the variable. Quantity Disturbance: Measure the magnitude and duration of the disturbance. This can be done by comparing the data points during the disturbance against the established set point. Monitor Changes: Track how the system responds to disturbances over time to assess their impact on maintaining homeostasis. WBC types and normal distribution values/ abnormal values and what those values indicate (infections/diseases) (Never Let Monkeys Eat Bananas) Neutrophils (50-70%) - First responders to infections, especially bacterial. High levels indicate bacterial infections, inflammation, or stress. Low levels can indicate bone marrow disorders or severe infections. Lymphocytes (20-40%) - Include B cells and T cells, important for immunity. High levels can suggest viral infections or leukemia, while low levels might indicate immune deficiency. Monocytes (2-8%) - Help with cleaning up dead cells and fighting infections. High levels can be linked to chronic infections or autoimmune diseases. Eosinophils (1-4%) - Involved in allergic reactions and fighting parasites. Elevated levels may indicate allergies or parasitic infections. Basophils (0.5-1%) - Release histamine during allergic reactions. High levels might be see in allergic conditions or blood disorders. Normal WBC Count Total WBC Count: 4000-11000 cells per microliter of blood (varies slightly by lab) Leukocytosis (High WBC): Can indicate infection, inflammation, stress, or leukemia Leukopenia (Low WBC): Can result from bone marrow disorders, viral infections, or autoimmune diseases Neutrophils: Banded vs Segmented Neutrophils are the most abundant type of white blood cells and play a crucial role in fighting infections. They exist in different stages of maturation: Banded Neutrophils (“Bands”) - Immature Neutrophils Appearance: Have a curved, unsegmented nucleus (band-shaped) Normal Range: 0-6% of total WBC count (~0-700/uL) Clinical Significance: Increased Bands (Bandemia) -> Indicates an acute bacterial infection or severe stress (e.g. sepsis). The bone marrow releases immature neutrophils in response to infection. Low Bands -> Not clinically significant unless the total WBC count is low, which could suggest bone marrow suppression. Segmented Neutrophils (“Segs”) - Mature Neutrophils Appearance: Have a segmented nucleus with 2-5 lobes Normal Range: 50-70% of total WBC count (~2500-7000/uL) Clinical Significance: High Segs (Neutrophilia) -> Suggests bacterial infections, stress, chronic inflammation, or leukemia Low Segs (Neutropenia) ->Can be caused by viral infections, bone marrow disorders, chemotherapy, or autoimmune diseases. Discuss the stages of cell cycle/mitosis-which stages are longest/shortest The cell cycle is a series of events that cells go through to grow and divide. It consists of two main phases: Interphase (Longest Phase) – Preparation for division Mitosis (Shortest Phase) – Actual cell division Stages of the Cell Cycle Interphase (90% of the Cell Cycle – Longest Phase) Interphase is the period of cell growth and DNA replication. It has three subphases: G1 Phase (Gap 1) The cell grows, produces proteins, and prepares for DNA replication. Longest variable phase; some cells may stay here indefinitely (e.g., neurons in G0 phase). S Phase (Synthesis) DNA replication occurs, ensuring each daughter cell gets a complete genome. Takes about 6-8 hours in human cells. G2 Phase (Gap 2) The cell prepares for mitosis by producing proteins and organelles. Shorter than G1 but still significant in length. Mitosis: Prophase, Metaphase, Anaphase, Telophase Know proportional and inversely proportional relationships Direct (Proportional) Relationship When two quantities increase or decrease together at a constant rate, they are directly proportional. Inversely Proportional When one variable increases, the other decreases proportionally. Know relationship between molecular weight and rate of diffusion The rate of diffusion of a substance is inversely proportional to the square root of its molecular weight. Lighter molecules diffuse faster Heavier molecules diffuse slower due to greater mass. Know relationship between filtration rate and pressure of fluid or weight of fluid Filtration rate is directly proportional to the pressure or weight of the fluid driving the filtration process. Higher pressure → Higher filtration rate Lower pressure → Lower filtration rate Know why men and women blood values are different The differences in blood values between men and women are due to biological, hormonal, and physiological factors
Updated 27d ago
flashcards Flashcards (8)
Bone Marrow Failure
Updated 28d ago
flashcards Flashcards (75)
Bone Marrow
Updated 31d ago
flashcards Flashcards (4)
1. Functions of Muscles: • Movement: Muscles contract to produce movement in the body, such as walking, running, or even facial expressions. • Posture and Stability: Muscles help maintain posture and stabilize joints, preventing falls or loss of balance. • Heat Production: Muscle contractions generate heat, which is vital for maintaining body temperature. • Protection of Internal Organs: Muscles, particularly in the abdominal region, protect internal organs from injury. • Circulation of Blood and Lymph: Cardiac and smooth muscles play roles in circulating blood and lymph throughout the body. 2. Characteristics of Muscles: • Excitability (Responsiveness): Muscles can respond to stimuli (like nerve signals). • Contractility: Muscles can contract or shorten when stimulated. • Extensibility: Muscles can be stretched without damage. • Elasticity: Muscles can return to their original shape after being stretched or contracted. 3. Locations of Smooth, Cardiac, and Skeletal Muscle: • Smooth Muscle: Found in walls of internal organs (e.g., stomach, intestines, blood vessels). • Cardiac Muscle: Found only in the heart. • Skeletal Muscle: Attached to bones and responsible for voluntary movements. 4. Events of Skeletal Muscle Contraction: 1. Nerve Impulse: A signal is sent from a motor neuron to the muscle. 2. Release of Acetylcholine: The neurotransmitter acetylcholine is released into the neuromuscular junction. 3. Muscle Fiber Activation: Acetylcholine stimulates muscle fibers, causing an action potential. 4. Calcium Release: The action potential triggers the release of calcium ions from the sarcoplasmic reticulum. 5. Cross-Bridge Formation: Calcium binds to troponin, moving tropomyosin, which allows myosin heads to attach to actin. 6. Power Stroke: Myosin heads pull actin filaments inward, causing the muscle to contract. 7. Relaxation: ATP breaks the cross-bridge, and the muscle relaxes when calcium is pumped back into the sarcoplasmic reticulum. 5. Isometric vs. Isotonic Contractions: • Isometric Contraction: The muscle generates tension without changing its length (e.g., holding a weight in a fixed position). • Isotonic Contraction: The muscle changes length while generating tension (e.g., lifting a weight). 6. Primary Functions of the Skeletal System: • Support: Provides structural support for the body. • Protection: Shields vital organs (e.g., brain, heart, lungs). • Movement: Works with muscles to allow movement. • Mineral Storage: Stores minerals like calcium and phosphorus. • Blood Cell Production: Bone marrow produces blood cells. • Energy Storage: Fat is stored in bone cavities. 7. Parts of a Long Bone: • Diaphysis: The shaft of the bone. • Epiphysis: The ends of the bone. • Metaphysis: Region between the diaphysis and epiphysis. • Medullary Cavity: Hollow cavity inside the diaphysis, containing bone marrow. • Periosteum: Outer membrane covering the bone. • Endosteum: Inner lining of the medullary cavity. 8. Inner and Outer Connective Tissue Linings of a Bone: • Outer: Periosteum. • Inner: Endosteum. 9. Structure of a Flat Bone: • Compact Bone: Dense bone found on the outside. • Spongy Bone: Lighter, less dense bone found inside, filled with red or yellow marrow. • No medullary cavity (unlike long bones). 10. Parts of the Osteon: • Central Canal (Haversian Canal): Contains blood vessels and nerves. • Lamellae: Concentric layers of bone matrix surrounding the central canal. • Lacunae: Small spaces containing osteocytes (bone cells). • Canaliculi: Small channels that connect lacunae and allow for nutrient exchange. 11. How Calcitonin, Calcitriol, and PTH Affect Blood Calcium: • Calcitonin: Lowers blood calcium levels by inhibiting osteoclast activity (bone resorption). • Calcitriol: Increases blood calcium by promoting calcium absorption in the intestines and bone resorption. • PTH (Parathyroid Hormone): Raises blood calcium by stimulating osteoclasts to break down bone and release calcium. 12. Two Forms of Ossification: • Intramembranous Ossification: Bone develops directly from mesenchymal tissue (e.g., flat bones of the skull). • Endochondral Ossification: Bone replaces a cartilage model (e.g., long bones). 13. Difference Between Appositional and Interstitial Growth: • Appositional Growth: Increase in bone diameter (growth at the surface). • Interstitial Growth: Increase in bone length (growth from within). 14. Different Joint Types: • Fibrous Joints: Connected by fibrous tissue (e.g., sutures of the skull). • Cartilaginous Joints: Connected by cartilage (e.g., intervertebral discs). • Synovial Joints: Have a fluid-filled joint cavity (e.g., knee, elbow). 15. Components of a Synovial Joint: • Articular Cartilage: Covers the ends of bones. • Synovial Membrane: Lines the joint capsule and produces synovial fluid. • Joint Capsule: Surrounds the joint, providing stability. • Ligaments: Connect bones to other bones. • Synovial Fluid: Lubricates the joint. 16. Hinge Joint Location: • Found in the elbow and knee. 17. Pivot Joint Location: • Found between the first and second cervical vertebrae (atlantoaxial joint). 18. Difference Between a Tendon and a Ligament: • Tendon: Connects muscle to bone. • Ligament: Connects bone to bone. 19. What is a Bursa? • A fluid-filled sac that reduces friction and cushions pressure points between the skin and bones or muscles and bones. 20. Three Types of Arthritis: • Osteoarthritis: Degeneration of joint cartilage and underlying bone, often due to wear and tear. • Rheumatoid Arthritis: Autoimmune disease causing inflammation in joints. • Gout: Caused by the accumulation of uric acid crystals in the joints. 21. Strain vs. Sprain: • A strain is damage to a muscle or tendon, whereas a sprain is damage to a ligament
Updated 36d ago
flashcards Flashcards (6)
0.00
studied byStudied by 0 people