OnRamps PreCalculus Unit 4B Quiz Review

0.0(0)
studied byStudied by 0 people
call kaiCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/8

encourage image

There's no tags or description

Looks like no tags are added yet.

Last updated 3:49 PM on 2/2/26
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No analytics yet

Send a link to your students to track their progress

9 Terms

1
New cards

Key features of the Parent Sine Function f(x) = \sin(x):

  1. Domain: (-\infty, \infty)

  2. Range: [-1, 1]

  3. Period: 2\pi

  4. Amplitude: 1

  5. Key Points: (0,0), (\frac{\pi}{2}, 1), (\pi, 0), (\frac{3\pi}{2}, -1), (2\pi, 0)

2
New cards

Key features of the Parent Cosine Function f(x) = \cos(x):

  1. Domain: (-\infty, \infty)

  2. Range: [-1, 1]

  3. Period: 2\pi

  4. Amplitude: 1

  5. Key Points: (0, 1), (\frac{\pi}{2}, 0), (\pi, -1), (\frac{3\pi}{2}, 0), (2\pi, 1)

3
New cards

Parent Tangent Function f(x) = \tan(x) characteristics:

  • Period: \pi

  • Vertical Asymptotes: x = \frac{\pi}{2} + n\pi for any integer n

  • x-intercepts: (n\pi, 0)

  • Range: (-\infty, \infty)

4
New cards

Horizontal Transformations of Tangent f(x) = \tan(bx):

  • New Period: \frac{\pi}{|b|}

  • Horizontal Stretch: Occurs when 0 < |b| < 1

  • Horizontal Compression: Occurs when |b| > 1

  • Asymptote Location: Set the argument bx = \pm \frac{\pi}{2} and solve for x

5
New cards

General Form of a Sinusoidal Function:

y = a \sin(b(x - h)) + k or y = a \cos(b(x - h)) + k

  • |a|: Amplitude

  • b: Frequency coefficient (\text{Period} = \frac{2\pi}{b}, for b > 0)

  • h: Phase shift (horizontal shift)

  • k: Midline (vertical shift)

6
New cards

Sinusoidal Modeling: Calculating Amplitude (a) and Midline (k):

  • Amplitude (a): \frac{\text{Maximum} - \text{Minimum}}{2}

  • Midline (k): \frac{\text{Maximum} + \text{Minimum}}{2}

  • Note: If modeling a periodic wave, the vertical distance from midline to peak is the amplitude.

7
New cards

Inverse Sine Function (f(x) = \sin^{-1}(x) or \arcsin(x)):

  • Domain: [-1, 1]

  • Range (Principal Values): [-\frac{\pi}{2}, \frac{\pi}{2}]

  • Purpose: Returns the angle \theta in the restricted interval whose sine is x

8
New cards

Inverse Cosine Function (f(x) = \cos^{-1}(x) or \arccos(x)):

  • Domain: [-1, 1]

  • Range (Principal Values): [0, \pi]

  • Purpose: Returns the angle \theta in the restricted interval whose cosine is x

9
New cards

Inverse Tangent Function (f(x) = \tan^{-1}(x) or \arctan(x)):

  • Domain: (-\infty, \infty)

  • Range (Principal Values): (-\frac{\pi}{2}, \frac{\pi}{2})

  • Note: The endpoints of the range are not included because the tangent function has asymptotes at those values