1/8
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No analytics yet
Send a link to your students to track their progress
Key features of the Parent Sine Function f(x) = \sin(x):
Domain: (-\infty, \infty)
Range: [-1, 1]
Period: 2\pi
Amplitude: 1
Key Points: (0,0), (\frac{\pi}{2}, 1), (\pi, 0), (\frac{3\pi}{2}, -1), (2\pi, 0)
Key features of the Parent Cosine Function f(x) = \cos(x):
Domain: (-\infty, \infty)
Range: [-1, 1]
Period: 2\pi
Amplitude: 1
Key Points: (0, 1), (\frac{\pi}{2}, 0), (\pi, -1), (\frac{3\pi}{2}, 0), (2\pi, 1)
Parent Tangent Function f(x) = \tan(x) characteristics:
Period: \pi
Vertical Asymptotes: x = \frac{\pi}{2} + n\pi for any integer n
x-intercepts: (n\pi, 0)
Range: (-\infty, \infty)
Horizontal Transformations of Tangent f(x) = \tan(bx):
New Period: \frac{\pi}{|b|}
Horizontal Stretch: Occurs when 0 < |b| < 1
Horizontal Compression: Occurs when |b| > 1
Asymptote Location: Set the argument bx = \pm \frac{\pi}{2} and solve for x
General Form of a Sinusoidal Function:
y = a \sin(b(x - h)) + k or y = a \cos(b(x - h)) + k
|a|: Amplitude
b: Frequency coefficient (\text{Period} = \frac{2\pi}{b}, for b > 0)
h: Phase shift (horizontal shift)
k: Midline (vertical shift)
Sinusoidal Modeling: Calculating Amplitude (a) and Midline (k):
Amplitude (a): \frac{\text{Maximum} - \text{Minimum}}{2}
Midline (k): \frac{\text{Maximum} + \text{Minimum}}{2}
Note: If modeling a periodic wave, the vertical distance from midline to peak is the amplitude.
Inverse Sine Function (f(x) = \sin^{-1}(x) or \arcsin(x)):
Domain: [-1, 1]
Range (Principal Values): [-\frac{\pi}{2}, \frac{\pi}{2}]
Purpose: Returns the angle \theta in the restricted interval whose sine is x
Inverse Cosine Function (f(x) = \cos^{-1}(x) or \arccos(x)):
Domain: [-1, 1]
Range (Principal Values): [0, \pi]
Purpose: Returns the angle \theta in the restricted interval whose cosine is x
Inverse Tangent Function (f(x) = \tan^{-1}(x) or \arctan(x)):
Domain: (-\infty, \infty)
Range (Principal Values): (-\frac{\pi}{2}, \frac{\pi}{2})
Note: The endpoints of the range are not included because the tangent function has asymptotes at those values