Results for "Reactants and Products"

Filters

Flashcards

Chapter 4 The Effects of Chemical Reactions. • Introduction to Chemical Reactions. - Chemical reaction: a process in which one or more substances change into one or more new substances. - Clues that a chemical reaction has occurred : 1. Color change Example: two colorless aqueous solutions mix together to produce a bright yellow precipitate. 2. A precipitate (solid) is formed when mixing two solutions together. 3. Gas formation. Bubbles of gas (effervescence) are produced when mixing substances together (solid – liquid or aqueous – aqueous ….) 4. Heat is produced. - Chemical reactions are described by using word equations or chemical equations. - Chemical equations need to be balanced when written because it shows the correct proportions (amounts) of chemicals in a reaction. - A balanced chemical equation has equal number of atoms of each element in the reactants (left hand side) and the products (right hand side). - Exercise: Balance the following equations. a) KClO3→KCl + O2 b) Na2O + H2O NaOH c) Cu + AgNO3 Cu(NO3)2 + Ag d) C3H7OH + O2 CO2 + H2O • Synthesis and Decomposition Reactions. Synthesis: Two or more substances (elements and / or compounds) combine to form one larger compound. General pattern: A + B → C Examples: N2 + 3 H2 → 2 NH3 CaO + CO2 → CaCO3 2 P + 3 Cl2 → 2 PCl3 Decomposition: This is opposite to synthesis; that is, one large compound breaks down (decomposes) into 2 or more simpler substances. Example: 2 KClO3 → 2 KCl + 3 O2 General pattern: R → S + T Remark: Usually decomposition happens due to heat or electricity. - Predicting the product of decomposition or synthesis reactions. 2 AlCl3 (s) → 2 Al (s) + 3 Cl2 (g) Zn (s) + S (s) → ZnS (s) 2 Zn (s) + O2 (g) → 2 ZnO(s) - Single Displacement (Replacement) Reactions. Definition: A reaction in which an element displaces (replaces) another element in a compound, producing a new compound and a new element. General pattern: A + BC → AC + B Example: Mg (s) + CuSO4 (aq) → MgSO4 (aq) + Cu (s) Zn (s) + 2 AgNO3 (aq) → Zn(NO3)2 (aq) + 2 Ag (s) Fe (s) + MgCl2 (aq) → no reaction. Remark: The element that displaces the other element in a compound must be more reactive (active) than that element, otherwise no reaction takes place. In the general pattern above, A should be more reactive than B for the reaction to proceed. The following reactivity (activity) series lists the chemical strength (reactivity) of the metals in order from the more reactive to the less reactive. KPlease stop calling my amazing zebra in the long Nahungry class. sorry !! Ca Mg Al Zn Fe Sn Pb H Cu Ag Examples of single displacement reactions : 2 Al (s) + 3 CuSO4 (aq) → Al2(SO4)3 (aq) + 3 Cu (s) Sn (s) + Zn(NO3)2 (aq) → no reaction Exercise: Complete and balance the following equations. If there is no reaction occurring write no reaction. a) 2 Al (s) + 6 HCl (aq) → 2 AlCl3 (aq) + 3 H2 (g) b) Cu (s) + H2SO4 (aq) → no reaction c) 2 AlCl3 (aq) + 3 Ca (s) → 3 CaCl2 (aq) + 2 Al (s) d) Mg (s) + 2 HNO3 (aq) → Mg(NO3)2 (aq) + H2(g) - Reactivity of halogens decreases down the group. F2> Cl2> Br2> I2 The reactions taking place for the halogens or their compounds are in solution (aqueous) Examples: Cl2 (aq) + 2 KBr (aq) → 2 KCl (aq) + Br2 (l) Cl2 (aq) + NaF (aq) → no reaction. Exercise: F2 (aq) + 2 LiCl (aq) → 2 LiF (aq) + Cl2 (g) I2 (aq) + NaCl (aq) → no reaction • Double displacement reactions. - Definition: A reaction in which two compounds mix together and an exchange of ions (elements) occurs which results in the formation of 2 new compounds. - General pattern: AB + CD → AD + CB - Solubility: the amount of solute that dissolves in a given amount of solvent at a given temperature. - When we say a substance is soluble, it means it dissolves in water; whereas if it is insoluble it means it doesn’t dissolve in water. - The compound in a reaction that is soluble is in aqueous (aq) phase, whereas the compound which is insoluble is in the solid state (s). - The solid which is formed in a double displacement reaction is called the precipitate and it is insoluble. - Solubility rules (used in double displacement reactions). 1. All alkali metal ions and ammonium ion (NH4+) are soluble. 2. All nitrates (NO3-) are soluble. 3. All sulfates (SO4-2) are solubleexceptwith Ba+2 , Pb+2 , Ca+2 , Sr+2 , Ag+ . 4. All chlorides, bromides and iodides(Cl-, Br-, I-) aresolubleexcept with Ag+ , Pb+2 , Hg+, Cu+ 5. All OH- are insolubleexceptwith rule 1, and Ba+2 and Sr+2 . 6. All oxides (O2-), sulfides (S2-), sulfites (SO32-), carbonates (CO32-), phosphates (PO43-) are insoluble except with rule 1 Remark: If all compounds formed in a double displacement reaction are soluble (aqueous) then no reaction takes place. Exercise: State whether each of the following compounds is soluble or insoluble ? Na2SO4 : Fe(NO3)2: LiOH: ZnSO4: PbBr2: BaSO4: Mg(OH)2: PbO: NH4Cl: Na2S: Cu(OH)2: KF: Exercise: Complete and balance the following chemical equations: - KNO3 (aq) + NaCl (aq) → - LiCl (aq) + AgNO3 (aq) → - Zn (s) + FeSO4 (aq) → - NaOH (aq) + CuCl2 (aq) → - ZnCl2 (aq) + Na3PO4 (aq) → - Pb(NO3)2 (aq) + K2S (aq) → • Net ionic equation: a chemical equation which shows ONLY the ions that are involved in the formation of the precipitate (solid). Examples: Pb+2 (aq) + S-2 (aq) → PbS (s) Ag+ (aq) + Cl- (aq) → AgCl (s) Cu+2 (aq) + 2 OH- (aq) → Cu(OH)2 (s) • Full ionic equation: an equation which shows All the ions in the soluble (aqueous compounds) in both reactants and products. Example: - 2 NaOH (aq) + CuCl2 (aq) → 2 NaCl (aq) + Cu(OH)2 (s) 2 Na+ (aq) + 2 OH- (aq) + Cu+2 (aq) + 2 Cl- (aq) → 2 Na+ (aq) + 2 Cl- (aq) + Cu(OH)2 (s) - 3 ZnCl2 (aq) + 2 Na3PO4 (aq) → Zn3(PO4)2 (s) + 6 NaCl (aq) Full ionicequation: 3 Zn+2(aq) + 6 Cl-(aq) + 6 Na+ (aq) + 2 PO4-3 (aq) → Zn3(PO4)2 (s) + 6 Na+ (aq) + 6 Cl- (aq) Net ionic equation: 3 Zn+2 (aq) + 2 PO4-3 (aq) → Zn3(PO4)2 (s) Exercise: Complete and balance the following equation, then write full ionic and net ionic equations for the reaction. Pb(NO3)2 (aq) + 2 NaI (aq) → Full ionic equation: Net ionic equation: Spectator ions: the ions that are not involved in the formation of the precipitate (solid). Note that the spectator ions appear on both sides of the full ionic equation. For example, in the above reaction, Na+ (sodium ions) and NO3- (nitrate ions) are the spectator ions. Exercise: Complete and balance the following equation, then write the net ionic equation and identify the spectator ions. BaCl2 (aq) + K2SO4 (aq) → Net ionic equation: Ba+2 (aq) + SO4-2 (aq) → Spectator ions: - Combustion reaction is a special type of (synthesis) reaction in which the substance reacts with (burns in) oxygen. Examples: C(s) + O2(g) → CO2(g) • Production of gases (lab scale): 1. CO2 2. SO2 3. H2 4. H2S (hydrogen sulfide) 5. NH3 (ammonia) General pattern of the chemical reactions to produce the above gases: 1. Metal carbonate + acid → CO2 Example: Na2CO3 (aq) + 2 HCl (aq) → 2 NaCl(aq) + CO2(g) + H2O(l) 2. Metal sulfite + acid → SO2 K2SO3 (aq) + 2 HCl (aq) → 2 KCl(aq) + SO2(g) + H2O(l) 3. Metal + acid → H2 Remark: This is a single displacement reaction therefore the metal used in the reaction should be higher in the reactivity series than hydrogen. Zn (s) + 2 HCl (aq) → ZnCl2 (aq) + H2(g) 4. Metal sulfide + acid → H2S Na2S (aq) + 2 HCl (aq) → 2 NaCl (aq) + H2S (g) 5. Ammonium compound + base (alkaline solution) → NH3 NH4Cl (aq) + NaOH (aq) → NaCl (aq) + NH3 (g) + H2O (l) Exercise: Write the net ionic equations for each of the above 5 reactions. Answers 1. 2 H+ (aq) + CO3-2(aq) → CO2(g) + H2O (l) 2. 2 H+ (aq) + SO3-2(aq) → SO2(g) + H2O (l) 3. Zn(s) + 2 H+(aq) → Zn+2(aq) + H2(g) 4. 2H+ (aq) + S-2 (aq) → H2S (g)
Updated 93d ago
flashcards Flashcards (4)
Chapter Summary 2.1 The Importance of Chemistry in Anatomy and Physiology Chemicals are all around us. Household products such as soap and shampoo as well as food and medicine are comprised of chemicals. The human body is also made of chemicals. We begin our examination of anatomy and physiology with a study of basic chemistry. 2.2 Fundamentals of Chemistry Matter is anything that has mass and takes up space. 1. Elements and atoms a. Naturally occurring matter on Earth is composed of ninety-two elements. b. Elements usually combine to form compounds. c. Elements are composed of atoms. d. Atoms of different elements vary in size, weight, and ways of interacting. 2. Atomic structure a. An atom consists of electrons surrounding a nucleus, which has protons and neutrons. The exception is hydrogen, which has only a proton in its nucleus. b. Electrons are negatively charged, protons positively charged, and neutrons uncharged. c. A complete atom is electrically neutral. d. The atomic number of an element is equal to the number of protons in each atom. 3. Isotopes a. Isotopes are atoms with the same atomic number but different mass numbers (due to differing numbers of neutrons). The atomic weight of an element is the average of the mass numbers of its various isotopes. b. All the isotopes of an element react chemically in the same manner. c. Some isotopes are radioactive and release atomic radiation. 4. Molecules and compounds a. Two or more atoms may combine to form a molecule. b. A molecular formula represents the numbers and types of atoms in a molecule. c. If atoms of the same element combine, they produce molecules of that element. d. If atoms of different elements combine, they form molecules called compounds. 2.3 Bonding of Atoms When atoms form links called bonds, they gain, lose, or share electrons. Electrons occupy space in areas called electron shells that encircle an atomic nucleus. Atoms with completely filled outer shells are inert, whereas atoms with incompletely filled outer shells gain, lose, or share electrons and thus become stable. 1. Ionic bonds a. Atoms that lose electrons become positively charged (cations); atoms that gain electrons become negatively charged (anions). b. Ions with opposite charges attract and join by ionic bonds. 2. Atoms that share electrons join by covalent bonds. a. Nonpolar molecules result from an equal sharing of electrons. b. Polar molecules result from an unequal sharing of electrons. c. Hydrogen bonds may form within and between polar molecules. 3. Chemical reactions a. In a chemical reaction, bonds between atoms, ions, or molecules break or form. Starting materials are called reactants; the resulting atoms or molecules are called products. b. Three types of chemical reactions are synthesis, in which large molecules build up from smaller ones; decomposition, in which molecules break down; and exchange reactions, in which parts of two different molecules trade positions. c. Many reactions are reversible. The direction of a reaction depends upon the proportion of reactants and products and the energy available. d. Catalysts (enzymes) influence the rate (not the direction) of the reaction. 2.4 Electrolytes, Acids and Bases, and Salts Compounds that ionize in water are electrolytes. 1. Electrolytes that release hydrogen ions are acids, and those that release hydroxide or other ions that react with hydrogen ions are bases. a. Acids and bases react to form water and electrolytes called salts. 2. Acid and base concentrations a. pH represents the concentration of hydrogen ions (H+) and hydroxide ions (OH−) in a solution. b. A solution with equal numbers of H+ and OH− is neutral and has a pH of 7.0; a solution with more H+ than OH− is acidic (pH less than 7.0); a solution with fewer H+ than OH− is basic (pH greater than 7.0). c. A tenfold difference in hydrogen ion concentration separates each whole number in the pH scale. d. Buffers are chemicals that resist pH change. 2.5 Chemical Constituents of Cells Molecules containing carbon and hydrogen atoms are organic and are usually nonelectrolytes; other molecules are inorganic and are usually electrolytes. 1. Inorganic substances a. Water is the most abundant compound in the body. Many chemical reactions take place in water. Water transports chemicals and heat and helps release excess body heat. b. Oxygen releases energy for metabolic activities from glucose and other molecules. c. Carbon dioxide is produced when certain metabolic processes release energy. d. Inorganic salts provide ions needed in a variety of metabolic processes. e. Electrolytes must be present in certain concentrations inside and outside of cells. 2. Organic substances a. Carbohydrates provide much of the energy cells require and are built of simple sugar molecules. b. Lipids, such as triglycerides (fats), phospholipids, and steroids, supply energy and are used to build cell parts. 1) The building blocks of triglycerides are glycerol and three fatty acids. 2) The building blocks of phospholipids are glycerol, two fatty acids, and a phosphate group. 3) Steroids include rings of carbon atoms and are synthesized in the body from cholesterol. c. Proteins serve as structural materials, energy sources, hormones, cell surface receptors, antibodies, and enzymes that speed chemical reactions without being consumed. 1) The building blocks of proteins are amino acids. 2) Proteins vary in the numbers and types of their constituent amino acids; the sequences of these amino acids; and their three-dimensional structures, or conformations. 3) Primary structure is the amino acid sequence. Secondary structure comes from attractions between amino acids that are close together in the primary structure. Tertiary structure reflects attractions of far-apart amino acids and folds the molecule. The amino acid sequence determines the protein’s conformation. 4) The protein’s conformation determines its function. 5) Exposure to excessive heat, radiation, electricity, or certain chemicals can denature proteins. d. Nucleic acids constitute genes, the instructions that control cell activities, and direct protein synthesis. 1) The two types are RNA and DNA. 2) Nucleic acid building blocks are nucleotides. 3) DNA molecules store information that cell parts use to construct specific proteins. 4) RNA molecules help synthesize proteins. 5) DNA molecules are replicated, and an exact copy of the original cell’s DNA is passed to each of the newly formed cells resulting from cell division.
Updated 266d ago
flashcards Flashcards (44)
0.00
studied byStudied by 0 people