☠️🌐 Apoptosis + Endomembrane System

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/19

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

20 Terms

1
New cards

Mitochondria & Programmed Cell Death

  • Programmed cell death (apoptosis) is a normal process where cells die in a coordinated sequence

  • Part of organism growth/development

  • Example: Interdigital cell death causes soft tissue regression between embryonic digits in many vertebrates

<ul><li><p class=""><strong>Programmed cell death</strong> (<strong>apoptosis</strong>) is a normal process where cells die in a <strong>coordinated sequence</strong></p></li><li><p class="">Part of <strong>organism growth</strong>/<strong>development</strong></p></li><li><p class="">Example: <strong>Interdigital cell death</strong> causes <strong>soft tissue regression</strong> between <strong>embryonic digits</strong> in many <strong>vertebrates</strong></p></li></ul><p></p>
2
New cards

Bone Morphogenetic Protein (BMP) and Apoptosis

  • Bone morphogenetic protein (BMP) is a secreted protein that binds to Bmp receptors (BmpRs)

  • Expression of non-active BmpRs in chicken embryonic hind limbs:

    • Greatly reduced interdigital apoptosis

    • Results in webbed feet

  • Ducks don’t have mutation → Have webbed feet

<ul><li><p class=""><strong>Bone morphogenetic protein (BMP)</strong> is a secreted protein that binds to <strong>Bmp receptors (BmpRs)</strong></p></li><li><p class=""><strong>Expression</strong> of non-active <strong>BmpRs</strong> in chicken embryonic hind limbs:</p><ul><li><p class="">Greatly reduced <strong>interdigital apoptosis</strong></p></li><li><p class="">Results in <strong>webbed feet</strong></p></li></ul></li><li><p class="">Ducks don’t have mutation → Have webbed feet</p></li></ul><p></p>
3
New cards

Apoptosis in Plant Growth

  • Apoptosis plays a role in plant growth

  • Madagascar Lace Plant:

    • A type of submerged aquatic plant

    • Has mature leaves that are fenestrated (contain holes)

  • Plant uses programmed cell death to generate holes in its leaves

<ul><li><p class=""><strong>Apoptosis</strong> plays a role in plant growth</p></li><li><p class=""><strong>Madagascar Lace Plant</strong>:</p><ul><li><p class="">A type of submerged aquatic plant</p></li><li><p class="">Has mature leaves that are <strong>fenestrated</strong> (contain holes)</p></li></ul></li><li><p class="">Plant uses <strong>programmed cell death</strong> to generate holes in its leaves</p></li></ul><p></p>
4
New cards

Normal vs. Apoptotic Cells

Apoptosis is characterized by:

  • Shrinkage of cell

  • Blebbing (bulge/protrusion) of plasma membrane

  • Fragmentation of DNA and nucleus

  • Loss of attachment to other cells

  • Engulfment by phagocytosis

Steps:

  1. Mild convolution, chromatin compaction, and margination

    • DNA begins to unwind out of chromatin and clumps against the nuclear envelope

    • Margination: Organelles are pushed to one side of cell

  2. Condensation of cytoplasm

    • Cytoplasm shrinks and becomes more compact

  3. Breakup of nuclear envelope

    • Nuclear envelope begins to break down

  4. Nuclear fragmentation

    • Nuclear material fragments into smaller pieces

  5. Blebbing

    • Plasma membrane bulges or protrudes

  6. Cell fragmentation

    • Cell breaks apart into smaller apoptotic bodies

  7. Phagocytosis

    • Apoptotic bodies are engulfed by phagocytic cells

<p><strong>Apoptosis</strong> is characterized by:</p><ul><li><p class=""><strong>Shrinkage</strong> of cell</p></li><li><p class=""><strong>Blebbing</strong> (bulge/protrusion) of plasma membrane</p></li><li><p class=""><strong>Fragmentation</strong> of DNA and nucleus</p></li><li><p class="">Loss of attachment to other cells</p></li><li><p class=""><strong>Engulfment</strong> by phagocytosis</p></li></ul><p class=""><strong>Steps:</strong></p><ol><li><p class=""><strong>Mild convolution, chromatin compaction, and margination</strong></p><ul><li><p class="">DNA begins to unwind out of chromatin and clumps against the nuclear envelope</p></li><li><p class="">Margination: Organelles are pushed to one side of cell</p></li></ul></li><li><p class=""><strong>Condensation of cytoplasm</strong></p><ul><li><p class="">Cytoplasm shrinks and becomes more compact</p></li></ul></li><li><p class=""><strong>Breakup of nuclear envelope</strong></p><ul><li><p class="">Nuclear envelope begins to break down</p></li></ul></li><li><p class=""><strong>Nuclear fragmentation</strong></p><ul><li><p class="">Nuclear material fragments into smaller pieces</p></li></ul></li><li><p class=""><strong>Blebbing</strong></p><ul><li><p class="">Plasma membrane bulges or protrudes</p></li></ul></li><li><p class=""><strong>Cell fragmentation</strong></p><ul><li><p class="">Cell breaks apart into smaller apoptotic bodies</p></li></ul></li><li><p class=""><strong>Phagocytosis</strong></p><ul><li><p class="">Apoptotic bodies are engulfed by phagocytic cells</p></li></ul></li></ol><p></p>
5
New cards

The Intrinsic (Initiated Internally) Pathway of Apoptosis

  • Initiated by intracellular stimuli (e.g., genetic damage, hypoxia, virus)

  • Killer proteins (e.g., Bax) cause changes in mitochondrial membrane potential (creates pores)

  • Bax proteins cause changes in mitochondrial membrane potential, leading to leakage of Cytochrome c

  • Bax assembles on outer mitochondrial membrane (OMM) to form a pore

  • Cytochrome c is released into cytosol

  • Apoptosome is formed by Cytochrome c and other proteins

  • Apoptosome activates executioner caspases, leading to apoptosis

<ul><li><p>Initiated by <strong>intracellular stimuli</strong> (e.g., genetic damage, hypoxia, virus)</p></li></ul><ul><li><p class=""><strong>Killer proteins</strong> (e.g., <strong>Bax</strong>) cause changes in <strong>mitochondrial membrane potential (creates pores)</strong></p></li><li><p class=""><strong>Bax proteins</strong> cause changes in mitochondrial membrane potential, leading to leakage of <strong>Cytochrome c</strong></p></li><li><p class=""><strong>Bax assembles</strong> on <strong>outer mitochondrial membrane (OMM)</strong> to form a <strong>pore</strong></p></li><li><p class=""><strong>Cytochrome c</strong> is released into <strong>cytosol</strong></p></li><li><p class=""><strong>Apoptosome</strong> is formed by <strong>Cytochrome c</strong> and other proteins</p></li><li><p class=""><strong>Apoptosome activates executioner caspases</strong>, leading to apoptosis</p></li></ul><p></p>
6
New cards

Release of Cytochrome c and Nuclear Fragmentation

  • Disrupts cell adhesion

  • Destroys lamins (nuclear filaments)

  • Breaks down cytoskeleton

  • Activates DNase (genome breakdown)

Before vs After:

  • Before: Intact nucleus and cell structure

  • After: Fragmentation and breakdown of cytoskeleton and nucleus during apoptosis

Caspases: Activated to carry out apoptosis

<ul><li><p class=""><strong>Disrupts cell adhesion</strong></p></li><li><p class=""><strong>Destroys lamins</strong> (nuclear filaments)</p></li><li><p class=""><strong>Breaks down cytoskeleton</strong></p></li><li><p class=""><strong>Activates DNase</strong> (genome breakdown)</p></li></ul><p class=""><strong>Before vs After</strong>:</p><ul><li><p class=""><strong>Before</strong>: Intact nucleus and cell structure</p></li><li><p class=""><strong>After</strong>: Fragmentation and breakdown of cytoskeleton and nucleus during apoptosis</p></li></ul><p class=""><strong>Caspases</strong>: Activated to carry out apoptosis</p>
7
New cards

Apoptosis and Diseases

  • Various diseases are directly associated with apoptosis

  • In some cases, insufficient apoptosis leads to diseases like cancer (cells evade apoptosis, leading to uncontrolled cell growth)

  • In other cases, excessive apoptosis causes diseases like neurodegenerative disorders (e.g., Alzheimer's, Parkinson's) where too many cells die, leading to tissue damage

<ul><li><p class="">Various diseases are directly associated with apoptosis</p></li><li><p class="">In some cases, <strong>insufficient apoptosis</strong> leads to diseases like <strong>cancer</strong> (cells evade apoptosis, leading to uncontrolled cell growth)</p></li><li><p class="">In other cases, <strong>excessive apoptosis</strong> causes diseases like <strong>neurodegenerative disorders</strong> (e.g., Alzheimer's, Parkinson's) where too many cells die, leading to tissue damage</p></li></ul><p></p>
8
New cards

Main Functions of Intracellular Compartments

  • Cytosol: Protein synthesis, many metabolic pathways

  • Nucleus: Contains genome, DNA, RNA synthesis, ribosome assembly

  • Endoplasmic Reticulum (ER): Synthesis of lipids, synthesis of proteins

  • Golgi Apparatus: Protein modification, packaging of proteins and lipids

  • Lysosomes: Degradation of cellular material

  • Endosomes: Sorting, recycling

  • Mitochondria: ATP synthesis, apoptosis

  • Chloroplasts: Photosynthesis, ATP synthesis

  • Peroxisomes: Oxidation of toxic molecules

9
New cards

Early Electron Microscopy Observations of Cytoplasm

Membrane-Bound Organelles Identified by Early Electron Microscopy

  • Endoplasmic Reticulum (ER)

  • Endosomal Transport Vesicles

  • Golgi Complex

  • Lysosomes

  • Vacuoles

Early EM of cytoplasm revealed:

  • Membrane-bound organelles and vesicles

  • Extensive network of membranous canals

  • Stacks of cisternae (sac-like structures)

<p><strong>Membrane-Bound Organelles Identified by Early Electron Microscopy</strong></p><ul><li><p class=""><strong>Endoplasmic Reticulum (ER)</strong></p></li><li><p class=""><strong>Endosomal Transport Vesicles</strong></p></li><li><p class=""><strong>Golgi Complex</strong></p></li><li><p class=""><strong>Lysosomes</strong></p></li><li><p class=""><strong>Vacuoles</strong></p></li></ul><p class=""><strong>Early EM of cytoplasm revealed:</strong></p><ul><li><p class="">Membrane-bound organelles and vesicles</p></li><li><p class="">Extensive network of membranous canals</p></li><li><p class="">Stacks of <strong>cisternae</strong> (sac-like structures)</p></li></ul><p></p>
10
New cards

Polarized Structure of Secretory Cell

  • Secreted proteins (e.g. mucin, glycoprotein in mucus) are:

    • Synthesized in rough ER

    • Processed in ER

    • Further processed in Golgi body

    • Concentrated in vesicles

    • Delivered to plasma membrane for secretion and exocytosis

  • Goblet cells:

    • Produce mucigen granules (precursors of mucus)

<ul><li><p class=""><strong>Secreted proteins</strong> (e.g. <strong>mucin</strong>, glycoprotein in mucus) are:</p><ul><li><p class=""><strong>Synthesized</strong> in <strong>rough ER</strong></p></li><li><p class=""><strong>Processed</strong> in <strong>ER</strong></p></li><li><p class=""><strong>Further processed</strong> in <strong>Golgi body</strong></p></li><li><p class=""><strong>Concentrated</strong> in <strong>vesicles</strong></p></li><li><p class=""><strong>Delivered</strong> to <strong>plasma membrane</strong> for <strong>secretion </strong>and <strong>exocytosis</strong></p></li></ul></li><li><p class=""><strong>Goblet cells:</strong></p><ul><li><p class="">Produce mucigen granules (precursors of mucus)</p></li></ul></li></ul><p></p>
11
New cards

Overview of Biosynthetic / Secretory Endomembrane System

  • Nuclear envelope

  • ER

  • Golgi apparatus

  • Vesicles

  • Lysosomes

  • Plasma membrane (phospholipid bilayer + proteins, cholesterol, glycolipids, glycoproteins)

  • Facilitates:

    • Exo and endocytosis

<ul><li><p>Nuclear envelope</p></li><li><p>ER</p></li><li><p>Golgi apparatus</p></li><li><p>Vesicles</p></li><li><p>Lysosomes</p></li><li><p>Plasma membrane (phospholipid bilayer + proteins, cholesterol, glycolipids, glycoproteins)</p></li><li><p>Facilitates:</p><ul><li><p>Exo and endocytosis</p></li></ul></li></ul><p></p>
12
New cards

Protein Synthesis - ONLY KNOW RED

Rough ER & Translation

  • Ribosomes attached to rough ER synthesize proteins

  • mRNA from nucleus is translated by ribosomes

  • rRNA in ribosomes facilitates peptide bond formation

  • Proteins enter ER lumen during translation

  • In ER, proteins undergo folding and initial modifications

Transport Through Endomembrane System

  • Properly folded proteins are packaged into transport vesicles

  • Vesicles move from ER to Golgi apparatus

  • In Golgi, proteins are further modified, sorted, and packaged

  • Sorted proteins transported via vesicles to:

    • Plasma membrane (for secretion)

    • Lysosomes (for degradation enzymes)

    • Other organelles (for functional use)

Summary of Flow

  1. Nucleus → mRNA

  2. Ribosome on rough ER → translation

  3. ER lumen → folding & modification

  4. Vesicles → transport to Golgi

  5. Golgi → processing & sorting

  6. Vesicles → final destination (e.g. membrane, lysosome, secretion)

13
New cards

Technique: Using GFP to Track Cell Components

  • Green Fluorescent Protein (GFP) from Aequorea victoria (jellyfish)

  • GFP gene is fused with gene that codes for target protein

  • Fusion protein is expressed in cells

  • Allows visualization of protein's location, movement, and dynamics using fluorescence microscopy

  • Common tool in cell biology for studying protein localization, organelle tracking, and cell behavior

<ul><li><p class=""><strong>Green Fluorescent Protein (GFP)</strong> from <em>Aequorea victoria</em> (jellyfish)</p></li><li><p class=""><strong>GFP gene</strong> is fused with gene that codes for <strong>target protein</strong></p></li><li><p class="">Fusion protein is <strong>expressed in cells</strong></p></li><li><p class="">Allows <strong>visualization</strong> of protein's <strong>location</strong>, <strong>movement</strong>, and <strong>dynamics</strong> using <strong>fluorescence microscopy</strong></p></li><li><p class="">Common tool in <strong>cell biology</strong> for studying <strong>protein localization</strong>, <strong>organelle tracking</strong>, and <strong>cell behavior</strong></p></li></ul><p></p>
14
New cards

Using GFP to Track Cell Components

  • GFP fusion protein fluoresces, enabling visualization under a microscope

  • Observation of fusion protein reveals information about endogenous protein

    • Localization of protein in a cell or organism

  • Variants of GFP emit fluorescence at different wavelengths

    • Achieved through genetic modifications

<ul><li><p><strong>GFP fusion protein</strong> fluoresces, enabling visualization under a microscope</p></li><li><p class=""><strong>Observation</strong> of fusion protein reveals information about <strong>endogenous protein</strong></p><ul><li><p class=""><strong>Localization</strong> of protein in a cell or organism</p></li></ul></li><li><p class=""><strong>Variants of GFP</strong> emit fluorescence at different wavelengths</p><ul><li><p class="">Achieved through <strong>genetic modifications</strong></p></li></ul></li></ul><p></p>
15
New cards

Transport of Material Between Compartments

  • Organelle → PM (and vice versa)

  • Organelle → Organelle

  • Uses transport vesicles (~50-75 nm)

    • Small, spherical, membrane-enclosed organelles

    • Bud off donor compartment and fuse with acceptor compartment

  • Targeted movement (directed)

    • Uses cytoskeleton and motor proteins

    • Sorting signals recognized by receptors

<ul><li><p class=""><strong>Organelle → PM</strong> (and vice versa)</p></li><li><p class=""><strong>Organelle → Organelle</strong></p></li><li><p class="">Uses <strong>transport vesicles</strong> (~50-75 nm)</p><ul><li><p class="">Small, spherical, membrane-enclosed organelles</p></li><li><p class="">Bud off <strong>donor compartment</strong> and fuse with <strong>acceptor</strong> compartment</p></li></ul></li><li><p class=""><strong>Targeted movement</strong> (directed)</p><ul><li><p class="">Uses <strong>cytoskeleton</strong> and <strong>motor proteins</strong></p></li><li><p class="">Sorting signals recognized by <strong>receptors</strong></p></li></ul></li></ul><p></p>
16
New cards

Key Elements of Vesicle Trafficking to a Compartment

  • Approach

    • Uses cytoskeleton and motor proteins

    • Can be anterograde (forward) or retrograde (backward)

  • Tethering

    • Uses Rab family proteins and other specialized proteins

  • Docking (SNARE assembly)

    • Vesicle has v-SNARE

    • Target membrane has t-SNARE

    • SNARE proteins interwind to form SNARE complex

    • SNARE complex pulls vesicle and target membrane closer (initiates lipid mixing)

  • Fusion of vesicle and target membrane

    • Fusion allows for cargo to release

    • SNARE complex is dissembled

<ul><li><p class=""><strong>Approach</strong></p><ul><li><p class="">Uses <strong>cytoskeleton</strong> and <strong>motor proteins</strong></p></li><li><p class="">Can be <strong>anterograde</strong> (forward) or <strong>retrograde</strong> (backward)</p></li></ul></li><li><p class=""><strong>Tethering</strong></p><ul><li><p class="">Uses <strong>Rab family proteins</strong> and other specialized proteins</p></li></ul></li><li><p class=""><strong>Docking (SNARE assembly)</strong></p><ul><li><p class="">Vesicle has <strong>v-SNARE</strong></p></li><li><p class="">Target membrane has <strong>t-SNARE</strong></p></li><li><p class=""><strong>SNARE </strong>proteins <strong>interwind</strong> to form <strong>SNARE complex</strong></p></li><li><p class="">SNARE complex <strong>pulls </strong>vesicle and target membrane closer (initiates lipid mixing)</p></li></ul></li><li><p class=""><strong>Fusion of vesicle and target membrane</strong></p><ul><li><p class="">Fusion allows for cargo to release</p></li><li><p class="">SNARE complex is dissembled</p></li></ul></li></ul><p></p>
17
New cards

Protein Transport Through Endomembrane System

  • 0 min: Protein starts in ER (where it’s synthesized)

  • 40 min: Proteins are concentrated in Golgi apparatus for further processing

  • 180 min: Proteins are transported to PM (to carry out functions)

18
New cards

Orientation of Transmembrane Proteins

  • Orientation of transmembrane protein is maintained through its travel

  • Cytoplasmic end of protein sticks out into cytosol

  • ER lumen end of protein faces into lumen of ER/Golgi/vesicle

  • *After exocytosis, ER lumen end of protein is on outside of plasma membrane since it merges and inverts

  • Proteins are tagged with signals to allow them to go to their designated locations

<ul><li><p class="">Orientation of transmembrane protein is maintained through its travel</p></li><li><p class=""><strong>Cytoplasmic end</strong> of protein sticks out into <strong>cytosol</strong></p></li><li><p class=""><strong>ER lumen end</strong> of protein faces into <strong>lumen of ER/Golgi/vesicle</strong></p></li><li><p class="">*After exocytosis, ER lumen end of protein is on outside of plasma membrane since it merges and inverts</p></li><li><p class="">Proteins are tagged with <strong>signals</strong> to allow them to go to their designated locations</p></li></ul><p></p>
19
New cards

Exocytosis Examples

  • Organelle → Plasma membrane

  • Secretion of neurotransmitter

    • Regulated exocytosis (by Ca2+)

    • Process:

      • Action potential reaches the axon terminal, triggering calcium ion influx

      • Calcium ions facilitate the fusion of synaptic vesicles with the presynaptic membrane

      • Neurotransmitters are released into the synaptic cleft and bind to receptors on the postsynaptic membrane

      • This binding initiates a signal in the postsynaptic cell

<ul><li><p class=""><strong>Organelle → Plasma membrane</strong></p></li><li><p class=""><strong>Secretion of neurotransmitter</strong></p><ul><li><p class=""><strong>Regulated</strong> exocytosis (by Ca<sup>2+</sup>)</p></li><li><p class=""><strong>Process</strong>:</p><ul><li><p class="">Action potential reaches the axon terminal, triggering calcium ion influx</p></li><li><p class="">Calcium ions facilitate the fusion of synaptic vesicles with the presynaptic membrane</p></li><li><p class="">Neurotransmitters are released into the synaptic cleft and bind to receptors on the postsynaptic membrane</p></li><li><p class="">This binding initiates a signal in the postsynaptic cell</p></li></ul></li></ul></li></ul><p></p>
20
New cards

Endocytosis Examples - Highlighted is most important

  • Plasma membrane → Organelle

  • Reduces number of AMPA receptors on plasma membrane

    → Less Na+ enters neuron when signal arrives

    → Weaker synaptic response

  • Arc protein
    → Controls how many AMPA receptors are in membrane

  • Activity-dependent internalization of AMPA receptors

    • GluA1/2: Subunits of AMPA receptors involved in synaptic transmission

    • Endophilin: Protein helps in vesicle formation during endocytosis

    • Arc: Protein involved in synaptic plasticity, translated locally at synapse

    • Dynamin: Helps vesicle fission during endocytosis

    • Reduced AMPA-mediated transmission: AMPA receptor internalization reduces synaptic transmission

    • Synaptic activity: Activates pathways that promote AMPA receptor internalization

    • Ribosome: Local translation of Arc near synapse during activity

<ul><li><p class=""><strong>Plasma membrane → Organelle</strong></p></li><li><p class=""><mark data-color="yellow" style="background-color: yellow; color: inherit">Reduces number of AMPA receptors on plasma membrane</mark></p><p><mark data-color="yellow" style="background-color: yellow; color: inherit">→ Less Na+ enters neuron when signal arrives</mark></p><p><mark data-color="yellow" style="background-color: yellow; color: inherit">→ Weaker synaptic response</mark></p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Arc protein</mark></strong><mark data-color="red" style="background-color: red; color: inherit"><br>→ Controls how many AMPA receptors are in membrane</mark></p></li><li><p class=""><strong>Activity-dependent internalization of AMPA receptors</strong></p><ul><li><p class=""><strong>GluA1/2</strong>: Subunits of AMPA receptors involved in synaptic transmission</p></li><li><p class=""><strong>Endophilin</strong>: Protein helps in vesicle formation during endocytosis</p></li><li><p class=""><strong>Arc</strong>: Protein involved in synaptic plasticity, translated locally at synapse</p></li><li><p class=""><strong>Dynamin</strong>: Helps vesicle fission during endocytosis</p></li><li><p class=""><strong>Reduced AMPA-mediated transmission</strong>: AMPA receptor internalization reduces synaptic transmission</p></li><li><p class=""><strong>Synaptic activity</strong>: Activates pathways that promote AMPA receptor internalization</p></li><li><p class=""><strong>Ribosome</strong>: Local translation of Arc near synapse during activity</p></li></ul></li></ul><p></p>