1/114
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
sin2 (x) + cos2 (x)
1
cot2(x) + 1
csc²(x)
½ (1 - cos2θ)
sin2 (θ)
tan2 θ + 1
sec2 θ
½ (1+ cos 2θ)
cos2 θ
d/dx (uv)
u v’ + vu”
d/dx ( f(g(x)) )
f’(g(x)) g’(x)
d/dx (ln u)
u’ / u
d/dx (sin u)
(cos u) u’
d/dx (tan u)
(sec2u) u’
d/dx (sec u)
(sec u tan u) u’
d/dx (arcsin u)
u’ / sqrt(1-u²)
d/dx (arctan u)
u’ / 1 + u²
d/dx (arcsec u)
u’ /( abs(u) sqrt(u² - 1))
d/dx au
au ln(a) u’
d/dx (un)
nun-1 u’
d/dx abs(u)
u/(abs(u)) u’
d/dx eu
eu u’
d/dx (cot u)
-(csc2 u) u’
d/dx (csc u)
-(csc u cot u) u”
d/dx (arccos u)
-u’ / sqrt(1-u²)
d/dx (arccot u)
-u’ / (1+ u²)
d/dx (arccsc u)
-u’ / ( abs(u) sqrt(u² -1))
∫ k f(u) du
k ∫ f(u) du
∫ tan u du
-ln |cos u| + C = ln |sec u| + C
∫ sec u du
ln |sec u + tan u| +C
∫ sec² u du
tan u +C
∫ cot u du
ln |sin u| +C
∫ csc u du
-ln |csc u + cot u| +C
∫ csc² u du
-cot u +C
∫ sec u tan u du
sec u +C
∫ du/ sqrt(a² - u²)
arcsin u/a +C
∫ du/ usqrt(u² -a²)
(1/a) arcsec (|u|/a) +C
∫ csc u cot c du
-csc u +C
∫ du/ (a² + u²)
(1/a) arctan (u/a) +C
∫ au du
au (1/ ln(a)) +C
∫ u dv
uv - ∫ v du
(px + q) / ((x-a) (x-b))
(A/ (x-a)) + (B/ (x-b))
(px² + qx +r) / ((x-a) (x-b) (x-c))
(A/(x-a)) + (B/(x-b)) + (C/(x-c))
Continuity
A function y=f(x) is continuous at x=a if: 1. f(a) exists, 2. lim (as x—>a) f(x) = f(a)
AROC
Δy / Δx; slope secant to the graph; multiple points
IROC
(a, b) —> f’(a); slope tangent to the graph; one point
f’(x)
lim (h—>0) f(x+h)-f(x) / h
f’(a)
lim (x—>a) f(x)-f(a) / x-a
if f’(x) > o on an interval
then f is increasing on the interval
if f’(x) < 0 on an interval
then f is decreasing on the interval
if f’’(x) > 0 on an interval
then f’ is increasing on the interval and f is concave up
if f’’(x) < 0 on an interval
then f’ is decreasing on the interval and f is concave down
lim(n—>∞) (1+ 1/n)n
e
lim(n—>0) (1+n)1/n
e
Mean Value Theorem
if f is continuous on [a, b] and differentiable on (a, b), then there is at least one number c in (a,b) such that (f(b)-f(a)) / (b-a) = f’(c)
Intermediate Value Theorem
if f is continuous on [a, b] with f(a) ≠ f(b) and k is a number between f(a) and f(b), there exists at least one number c in (a, b) for which f(c) = k
Critical Number
a number c in the interior of the domain of a function is called a critical number of f if either f’(c)=0 of f’(c) is not defined
Point of Inflection
A point of the graph of a function where there is a tangent line and the concavity changes
The 1st Derivative Test
if c is a critical number and if f’ changes sign at x=c, then:
1) f has a local minimum at x=c if f’ is negative to the left of c and positive to the right
2) f has a local maximum at x=c if f’ is positive to the left of c and negative to the right
2nd Derivative Test
1) if f’(c)=0 and f’’(c) >0, then f has a local minimum at c
2) if f’(c)=0 and f’’(c) <0, then f has a local maximum at c
Trapezoidal Rule (if interval is consistent)
if a function f is continuous on the closed interval [a, b] where [a, b] has been partitioned into n subintervals [x0, x1], [x1, x2], …, [xn-1, xn] each of length (b-a)/n, then ∫[a, b] f(x) dx ≈ (b-a)/2n [f(x0) +2f(x1)+…+2f(xn-1)+f(xn)] if interval is not consistent then find area of the each trapezoid and add them up
Average Value
1/(b-a) ∫ [a, b] f(x) dx
Euler’s Method
for a function, containing the point (x1, y1), the point (x2,y2) = (x1+∆x, y1+∆y) which is also on the curve may be approx. by letting ∆ y = ∆ x (dy/dx (x1, y1))
Arc Length = distance traveled along curve/perimeter
l = ∫[a,b] sqrt(1+(f’(x))²) dx or l = ∫[a,b] sqrt(1+ (dy/dx)²) dx
d²y / dx²
(d/dt [dy/dx]) / (dx/dt)
r cos θ
x
rsin θ
y
tan θ
y/x
r²
x² + y²
Area in Polar Coordinates
A= 0.5∫[α,β] [f(θ)]² dθ = 0.5∫[α,β] r² dθ
dy/dθ
r’sinθ + rcosθ
dx/dθ
-rsinθ + r’cosθ
derivative in polar form
(dy/dθ) / (dx/dθ)
Fundamental Theorems of Calculus
1) d/dx ∫[a,u] f(t) dt = f(u)u’, where u is a function of x
2) ∫[a,b] f(x) dx = F(b) - F(a), where F’(x) = f(x)
∫[a,b] c ⋅ f(x) dx
c ⋅ ∫[a,b] f(x) dx
∫[a,a] f(x) dx
0
∫[a,b] f(x) dx
-∫[b,a] f(x) dx
∫[a,b] f(x) dx
∫[a,c] f(x) dx + ∫[c.b] f(x) dx, where f is continuous on an interval containing a, b, and c
if f(x) is an odd function
then ∫[-a,a] f(x) dx = 0
if f(x) is an even function
then ∫[-a,a] f(x) dx = 2∫[0,a] f(x) dx
if f(x) ≥ 0 on [a,b]
then ∫[a,b] f(x) dx ≥ 0
if g(x) ≥ f(x) on [a,b]
then ∫[a,b] g(x) dx ≥ ∫[a,b] f(x) dx
what series qualifies for nth-term test?
∑[n=1, ∞] an
What shows convergence on nth-term test?
nothing; test does not test for convergence
What shows divergence on nth-term test?
lim(n→∞) an ≠ 0
what series qualifies for geometric series test?
∑[n=0, ∞] arn
What shows convergence on geometric series test?
|r| < 1
What shows divergence in geometric series?
|r| ≥ 1
Geometric series test comment:
sum = a/ 1-r
series for p-series?
∑[n=1, ∞] 1/np
when does converge for p series?
p > 1
en does diverge for p-sereis?
p ≤ 1
p-sereis comments
can be verified by integral test
series for alternating series
∑[n=1, ∞] (-1)(n-1) an
when does alternating series converges?
0 < an+1< an AND lim[n→∞] an= 0
when does alternating series diverege
never
alternating series comments
|Rn| ≤ an+1
when to sue integral test
1) f must be positive, decreasing, and continuous
2)∑[n=1, ∞] an , an=f(n)
when does integral test converege
∫[1,∞] f(x)dx converges
when does integral test deivereg
∫[1,∞] f(x)dx diverges
integral test comment
Rn < ∫[n,∞] f(x)dx
sereis for ratio test
Σ[n=1, ∞] an
when does ratio test converege
lim[n→∞] |an+1 / an| < 1
when does ratio test diverege
lim[n→∞] |an+1 / an| > 1