1/37
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Derivative of sinx
cosx
Derivative of tanx
sec²x
Derivative of secx
secx tanx
Derivative of cosx
-sinx
Derivative of cotx
-csc²x
Derivative of cscx
-cscx cotx
derivative of arcsin
\frac{1}{\sqrt{1-x^2}}
derivative of arccos
-\frac{1}{\sqrt{1-x^2}}
derivative of arctan
\frac{1}{1+x^2}
\int^{}\sin u\,dx
-\cos u+c
\int^{}\cos u\,dx
sinu + c
\int^{}\tan u\,dx
-\ln\left\vert\cos u\right\vert+c
\int^{}\cot u\,dx
\ln\left\vert\sin u\right\vert+c
\int^{}\sec u\,dx
\ln\left\vert\sec u+\tan u\right\vert+c
\int^{}\csc u\,dx
-\ln\left\vert\csc u+\cot u\right\vert+c
\int^{}\sec^2u\,dx
\tan u+c
\int^{}\csc^2u\,dx
-cotu+c
\int^{}\sec u\tan u\,dx
secu+c
\int^{}\csc u\cot u\,dx
-cscu+c
\frac{du}{\sqrt{a^2-u^2}}
\arcsin\frac{u}{a}
\frac{du}{a^2+u^2}
\frac{1}{a}\arcsin\frac{u}{a}
\frac{du}{\sqrt{a^2-u^2}}
\frac{1}{a}\frac{\operatorname{arcsec}u}{a}
sin²x+cos²x =
1
sin²x =
\frac{1-\cos2x}{2}
cos²x =
\frac{1+\cos2x}{2}
if sine is odd and positive
keep one sine and convert rest to cosines
if cosine is odd and positive
keep one cosine and convert rest to sines
sinmxsinnx
½ (cos[(m-n)x]-cos[(m+n)x])
sinmxcosnx
½ (sin[(m-n)x]+sin[(m+n)x])
cosmxcosnx
½ (cos[(m-n)x]+cos[(m+n)x])
\sqrt{a^2+x^2}
a\sin\theta
\sqrt{a^2+x^2}
a\tan\theta
\sqrt{x^2-a^2}
a\sec\theta
1-sin² \theta
cos^ \theta
1+tan² \theta
sec² \theta
sec² \theta -1
tan² \theta
\int_1^{\infty}\!\frac{dx}{x^{p}}\,p>1
\frac{1}{p-1}
\int_1^{\infty}\!\frac{dx}{x^{p}}\,p<1
diverges