1/25
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Deviation
x - x̄ or x - μ, the difference between an individual value and the mean
A larger deviation
more spread out data
σ = sqrt( Σ(x - μ)² / N )
Population standard deviation
s = sqrt( Σ(x - x̄)² / n - 1)
Sample standard deviation
σ² = Σ(x - μ)² / N
Population variance
s² = Σ(x - x̄)² / n - 1
Sample variance
σ = sqrt( Σf(mi - μ)² / N )
Population standard deviation for grouped data
s = sqrt( Σf(x - x̄)² / n )
Sample standard deviation for grouped data
Σ|x - μ| / N
Population mean absolute deviation
Σ|x - x̄| / n
Sample mean absolute deviation
Σf|mi - μ| / N
Population mean absolute deviation for grouped data
Σf|mi - x̄| / n
Sample mean absolute deviation for grouped data
First quartile (Q1)
25th percentile of the data 0.25(n+1)
Second quartile (Q2)
50th percentile / Median of the data
Third quartile (Q3)
75th percentile of the data 0.75(n+1)
Interquartile range (IQR)
= Q3 - Q1
Percentile
k%(n+1)
Z = (x - μ) / σ
Z-score formula for population
Z = (x - x̄) / s
Z-score formula for sample
bi = μ + σZ
Bell mark formula for population
bi = x̄ + sZ
Bell mark formula for sample
N
Population size
n
Sample size
μ
Population mean
x̄
Sample mean
Outlier
Q1-IQRx1.5
Q3+1.5xIQR