UNFINISHED_AP Physics C Mechanics EXAM REVIEW

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/13

flashcard set

Earn XP

Description and Tags

created 2025; EHS- UNFINISHED

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

14 Terms

1
New cards

vectors

quantities with magnitude and direction; ex- velocity, displacement, acceleration, force, momentum

can be written in component form: v= ai +bj+ ck

2
New cards

scalar

quantities with only a magnitude; ex- distance, speed, mass, energy, temperature, time

3
New cards

Dot Product (vector multiplication)

method 1: A*B = |A||B|cosθ

method 2: A*B= AxBx + AyBy + AzBz

produces a scalar

4
New cards

Cross Product (vector multiplication)

method 1: |AxB| = |A||B| sinθ

method 2: if A= Axi + Ayj + Azk and B= Bxi + Byj + Bzk

then AxB= (AyBz - AzBy)i - (AxBz + AzBx)j + (AxBy - AyBx)j

produces a vector

5
New cards

average displacement, velocity, and acceleration

displacement: ∆x=(xf - xi) units: m

velocity: ∆v= ∆x/t units: m/s

acceleration: ∆a= ∆v/t units: m/s2

6
New cards

instantaneous displacement, velocity, and acceleration

displacement: x(t)= ∫v(t) dt

velocity: vinst= dx/dt; v(t)= ∫a(t) dt

acceleration: ainst=dv/dt OR ainst=d2x/dt2

7
New cards

graphical representation of position, velocity, and acceleration

slope of x(t) = v(t)

slope of v(t) = a(t)

area under curve of a(t) = v(t)

area under curve of v(t) = x(t)

<p>slope of x(t) = v(t) </p><p>slope of v(t) = a(t) </p><p>area under curve of a(t) = v(t) </p><p>area under curve of v(t) = x(t) </p>
8
New cards

how to linearize data in desmos

steps

  • add table, insert values, and adjust window

  • determine the type of non-linear relationship (ex: inverse, square, inv-square, root, inv-root, quadratic, log, exponential)

  • create new variables to represent the transformation

  • plot the new data points

  • draw a line of best fit

non-linear power function relationship examples (c is constant):

  • inverse: y= c/x

  • square: y= cx2

  • inv-square: y= c/x2

  • root: y= c√x

  • inv-root: y=c/√x

<p>steps </p><ul><li><p>add table, insert values, and adjust window </p></li><li><p>determine the type of non-linear relationship (ex: inverse, square, inv-square, root, inv-root, quadratic, log, exponential) </p></li><li><p>create new variables to represent the transformation </p></li><li><p>plot the new data points </p></li><li><p>draw a line of best fit </p></li></ul><p>non-linear power function relationship examples (c is constant): </p><ul><li><p>inverse: y= c/x</p></li><li><p>square: y= cx<sup>2</sup></p></li><li><p>inv-square: y= c/x<sup>2</sup></p></li><li><p>root: y= c√x</p></li><li><p>inv-root: y=c/√x</p><p></p></li></ul><p></p><p></p>
9
New cards

kinematic equations for constant acceleration

vf= vi + at

x= xi + vit + 1/2at2

vf2= vi2 + 2a(xf - xi)

x= 1/2(vi + vf)t

only when acceleration is constant!!

10
New cards

NOTE: START AT 1.4 DAILY VIDEOS

11
New cards
12
New cards
13
New cards
14
New cards