definition of continuity
lim (x→c⁻) f(x)=lim(x→c⁺)f(x)=f(c) OR lim(x→c)f(x)=f(c)
Intermediate Value Theorem
(a) since f is continuous on [a,b] and
(b) f(a)<k<f(b),
(c) IVT guarantees at least one c in (a,b) such that f(c)=k
chain rule
(d/dx)(f(g(x)))=f’(g(x))*g’(x)
product rule
(d/dx)[f*g]= f’g+fg’
quotient rule
(d/dx)[f/g]= (f’g-fg’)/g²
(d/dx) sinu
cosu(u’)
(d/dx) cosu
-sinu(u’)
(d/dx) tanu
sec²u(u’)
(d/dx) cotu
-csc²u(u’)
(d/dx) secu
secutanu(u’)
(d/dx) cscu
-cscucotu(u’)
extreme value theorem
since f is a continuous function on [a,b] must have a maximum and minimum value within that interval.
relative/local extrema
a high/low point relative to the points around it; can only occur at a critical value.
Absolute Extremum (Min/Max)
the highest/lowest point on a given interval; can occur at a critical value OR an endpoint.
Mean Value Theorem(MVT)
Since f is continuous on [a, b] and differentiable on (a, b) MVT guarantees that there exists an x-value such that f’(x)=(f(b)-f(a))/(b-a)
∫(cosu)du
sin u +C
∫(sinu)du
-cos u +C
∫(sec²u)du
tan u +C
∫(csc²u)du
-cot u +C
∫(secutantu)du
sec u +C
∫(cscucotu)du
-csc u +C
1st FTC
∫(a to b) ƒ’(x)dx=f(b)-f(a)
2nd FTC
(d/dx)∫(u to v) g(t)dt=g(v)(v’)-g(u)(u’)
average value of a function on [a,b]
(1/(b-a))∫(a to b) f(x)dx
displacement
∫(a to b) v(t)dt
total distance
∫(a to b) |v(t)| dt
∫(tanu)du
-ln|cos u|+C
∫(cotu)du
ln|sin u| +C
∫(secu)du
ln|secu+tanu|+C
∫(cscu)du
-ln|cscu+cotu|+C
inverse derivative
(f⁻¹)’(x)=1/(f’(f⁻¹(x))
(d/dx)[eⁿ]
eⁿ+c
(d/dx)[aⁿ]
aⁿ(ln a) n’
(d/dx)ln u
u’/u
(d/dx) logₙu
u’/(u (ln n))
∫eⁿdn
eⁿ+C
∫aⁿdn
aⁿ/lna +C
∫(1/u)du
ln |u| +C
(d/dx)[arcsin u]
u’/√(1-u²)
(d/dx) [arctan u]
u’/(1+u²)
(d/dx)[arcsecu]
u’/(u√(u²-1))
(d/dx)[arccosu]
-u’/√(1-u²)
(d/dx)[arccotu]
-u’/(1+u²)
(d/dx) [arccsc u]
-u’/(u√(u²-1))
∫(1/√(a²-u²))du
arcsin (u/a) +C
∫(1/(a²+u²))du
(1/a) arctan (u/a) +C
exponential growth/decay
if dy/dt=ky, then y=c(e^kt)
logistics equation
if dy/dt =ky(1-(y/L)), then y=L/(1+C(e^-kt))
area between two curves
∫(a to b) (top-bottom)dx OR ∫(a to b) (right-left)dy
volume disk method
v=π(∫(a to b) R²dx
Volume washer method
v=π(∫(a to b) (R²-r²)dx
Volume shell method
v=2π(∫(a to b) (ph)dx
solids of known cross-section
v=(∫(a to b) A(x)dx
arc length
L=∫(a to b) √(1+[f’(x)]²)dx
Surface Area
S=∫(a to b) 2πr√(1+[f’(x)]²)dx
integration by parts
∫u dv = uv-∫v du
Taylor Series
f(x) = f(c)+f’(c)(x-c)+f’’(c)(x-c)²/2!+…+fⁿ(c)(n-c)ⁿ/n!
Taylor series for e^x (centered at 0)
1+x+x²/2!+x³/3!+…+xⁿ/n! (for all real numbers)
Taylor series for sin x (centered at 0)
x-x³/3!+x⁵/5!-x⁷/7!+…+(-1)ⁿx²ⁿ⁺¹/(2n+1)! (for all real numbers)
taylor series for cos x (centered at 0)
1-x²/2!+x⁴/4!-x⁶/6!+…+(-1)ⁿx²ⁿ/(2n)! (for all real numbers)
power series for 1/(1-x)
1+x+x²+x³+x⁴+…+xⁿ (for -1<x<1)
Alternating series error
error≤|Aₙ₊₁|
Lagrange error
error≤|fⁿ⁺¹(max)|/(n+1)!×(x-c)ⁿ
parametric equation slope
dy/dx= (dy/dt)/(dx/dt)
Parametric 2nd derivative
d²y/dx²=(d/dt)[dy/dx]/(dx/dt)
parametric speed
√[(dx/dt)²+(dy/dt)²]
parametric arc length (aka total distance
L=∫(a to b) √[(dx/dt)²+(dy/dt)²] dt
polar area
A=½∫(a to b) r²dθ
Polar parametrics
x=r cosθ and y=r sinθ