BC Calc Memory Quiz

4.2(6)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/68

flashcard set

Earn XP

Description and Tags

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

69 Terms

1
New cards
definition of continuity
lim (x→c⁻) f(x)=lim(x→c⁺)f(x)=f(c) OR lim(x→c)f(x)=f(c)
2
New cards
Intermediate Value Theorem
(a) since f is continuous on \[a,b\] and

(b) f(a)
3
New cards
chain rule
(d/dx)(f(g(x)))=f’(g(x))\*g’(x)
4
New cards
product rule
(d/dx)\[f\*g\]= f’g+fg’
5
New cards
quotient rule
(d/dx)\[f/g\]= (f’g-fg’)/g²
6
New cards
(d/dx) sinu
cosu(u’)
7
New cards
(d/dx) cosu
\-sinu(u’)
8
New cards
(d/dx) tanu
sec²u(u’)
9
New cards
(d/dx) cotu
\-csc²u(u’)
10
New cards
(d/dx) secu
secutanu(u’)
11
New cards
(d/dx) cscu
\-cscucotu(u’)
12
New cards
extreme value theorem
since f is a continuous function on \[a,b\] must have a maximum and minimum value within that interval.
13
New cards
relative/local extrema
a high/low point relative to the points around it; can only occur at a critical value.
14
New cards
Absolute Extremum (Min/Max)
the highest/lowest point on a given interval; can occur at a critical value OR an endpoint.
15
New cards
Mean Value Theorem(MVT)
Since f is continuous on \[a, b\] and differentiable on (a, b) MVT guarantees that there exists an x-value such that f’(x)=(f(b)-f(a))/(b-a)
16
New cards
∫(cosu)du
sin u +C
17
New cards
∫(sinu)du
\-cos u +C
18
New cards
∫(sec²u)du
tan u +C
19
New cards
∫(csc²u)du
\-cot u +C
20
New cards
∫(secutantu)du
sec u +C
21
New cards
∫(cscucotu)du
\-csc u +C
22
New cards
1st FTC
∫(a to b) ƒ’(x)dx=f(b)-f(a)
23
New cards
2nd FTC
(d/dx)∫(u to v) g(t)dt=g(v)(v’)-g(u)(u’)
24
New cards
average value of a function on \[a,b\]
(1/(b-a))∫(a to b) f(x)dx
25
New cards
displacement
∫(a to b) v(t)dt
26
New cards
total distance
∫(a to b) |v(t)| dt
27
New cards
∫(tanu)du
\-ln|cos u|+C
28
New cards
∫(cotu)du
ln|sin u| +C
29
New cards
∫(secu)du
ln|secu+tanu|+C
30
New cards
∫(cscu)du
\-ln|cscu+cotu|+C
31
New cards
inverse derivative
(f⁻¹)’(x)=1/(f’(f⁻¹(x))
32
New cards
(d/dx)\[eⁿ\]
eⁿ+c
33
New cards
(d/dx)\[aⁿ\]
aⁿ(ln a) n’
34
New cards
(d/dx)ln u
u’/u
35
New cards
(d/dx) logₙu
u’/(u (ln n))
36
New cards
∫eⁿdn
eⁿ+C
37
New cards
∫aⁿdn
aⁿ/lna +C
38
New cards
∫(1/u)du
ln |u| +C
39
New cards
(d/dx)\[arcsin u\]
u’/√(1-u²)
40
New cards
(d/dx) \[arctan u\]
u’/(1+u²)
41
New cards
(d/dx)\[arcsecu\]
u’/(u√(u²-1))
42
New cards
(d/dx)\[arccosu\]
\-u’/√(1-u²)
43
New cards
(d/dx)\[arccotu\]
\-u’/(1+u²)
44
New cards
(d/dx) \[arccsc u\]
\-u’/(u√(u²-1))
45
New cards
∫(1/√(a²-u²))du
arcsin (u/a) +C
46
New cards
∫(1/(a²+u²))du
(1/a) arctan (u/a) +C
47
New cards
exponential growth/decay
if dy/dt=ky, then y=c(e^kt)
48
New cards
logistics equation
if dy/dt =ky(1-(y/L)), then y=L/(1+C(e^-kt))
49
New cards
area between two curves
∫(a to b) (top-bottom)dx OR ∫(a to b) (right-left)dy
50
New cards
volume disk method
v=π(∫(a to b) R²dx
51
New cards
Volume washer method
v=π(∫(a to b) (R²-r²)dx
52
New cards
Volume shell method
v=2π(∫(a to b) (ph)dx
53
New cards
solids of known cross-section
v=(∫(a to b) A(x)dx
54
New cards
arc length
L=∫(a to b) √(1+\[f’(x)\]²)dx
55
New cards
Surface Area
S=∫(a to b) 2πr√(1+\[f’(x)\]²)dx
56
New cards
integration by parts
∫u dv = uv-∫v du
57
New cards
Taylor Series
f(x) = f(c)+f’(c)(x-c)+f’’(c)(x-c)²/2!+…+fⁿ(c)(n-c)ⁿ/n!
58
New cards
Taylor series for e^x (centered at 0)
1+x+x²/2!+x³/3!+…+xⁿ/n! (for all real numbers)
59
New cards
Taylor series for sin x (centered at 0)
x-x³/3!+x⁵/5!-x⁷/7!+…+(-1)ⁿx²ⁿ⁺¹/(2n+1)! (for all real numbers)
60
New cards
taylor series for cos x (centered at 0)
1-x²/2!+x⁴/4!-x⁶/6!+…+(-1)ⁿx²ⁿ/(2n)! (for all real numbers)
61
New cards
power series for 1/(1-x)
1+x+x²+x³+x⁴+…+xⁿ (for -1
62
New cards
Alternating series error
error≤|Aₙ₊₁|
63
New cards
Lagrange error
error≤|fⁿ⁺¹(max)|/(n+1)!×(x-c)ⁿ
64
New cards
parametric equation slope
dy/dx= (dy/dt)/(dx/dt)
65
New cards
Parametric 2nd derivative
d²y/dx²=(d/dt)\[dy/dx\]/(dx/dt)
66
New cards
parametric speed
√\[(dx/dt)²+(dy/dt)²\]
67
New cards
parametric arc length (aka total distance
L=∫(a to b) √\[(dx/dt)²+(dy/dt)²\] dt
68
New cards
polar area
A=½∫(a to b) r²dθ
69
New cards
Polar parametrics
x=r cosθ and y=r sinθ