Home
Explore
Exams
Search for anything
Login
Get started
Home
Math
AP Calculus BC
BC Calc Memory Quiz
4.2
(6)
Rate it
Learn
Practice Test
Spaced Repetition
Match
Flashcards
Card Sorting
1/68
Earn XP
Description and Tags
Calculus
AP Calculus BC
formulas
11th
Add tags
Study Analytics
All
Learn
Practice Test
Matching
Spaced Repetition
Name
Mastery
Learn
Test
Matching
Spaced
No study sessions yet.
69 Terms
View all (69)
Star these 69
1
New cards
definition of continuity
lim (x→c⁻) f(x)=lim(x→c⁺)f(x)=f(c) OR lim(x→c)f(x)=f(c)
2
New cards
Intermediate Value Theorem
(a) since f is continuous on \[a,b\] and
(b) f(a)
3
New cards
chain rule
(d/dx)(f(g(x)))=f’(g(x))\*g’(x)
4
New cards
product rule
(d/dx)\[f\*g\]= f’g+fg’
5
New cards
quotient rule
(d/dx)\[f/g\]= (f’g-fg’)/g²
6
New cards
(d/dx) sinu
cosu(u’)
7
New cards
(d/dx) cosu
\-sinu(u’)
8
New cards
(d/dx) tanu
sec²u(u’)
9
New cards
(d/dx) cotu
\-csc²u(u’)
10
New cards
(d/dx) secu
secutanu(u’)
11
New cards
(d/dx) cscu
\-cscucotu(u’)
12
New cards
extreme value theorem
since f is a continuous function on \[a,b\] must have a maximum and minimum value within that interval.
13
New cards
relative/local extrema
a high/low point relative to the points around it; can only occur at a critical value.
14
New cards
Absolute Extremum (Min/Max)
the highest/lowest point on a given interval; can occur at a critical value OR an endpoint.
15
New cards
Mean Value Theorem(MVT)
Since f is continuous on \[a, b\] and differentiable on (a, b) MVT guarantees that there exists an x-value such that f’(x)=(f(b)-f(a))/(b-a)
16
New cards
∫(cosu)du
sin u +C
17
New cards
∫(sinu)du
\-cos u +C
18
New cards
∫(sec²u)du
tan u +C
19
New cards
∫(csc²u)du
\-cot u +C
20
New cards
∫(secutantu)du
sec u +C
21
New cards
∫(cscucotu)du
\-csc u +C
22
New cards
1st FTC
∫(a to b) ƒ’(x)dx=f(b)-f(a)
23
New cards
2nd FTC
(d/dx)∫(u to v) g(t)dt=g(v)(v’)-g(u)(u’)
24
New cards
average value of a function on \[a,b\]
(1/(b-a))∫(a to b) f(x)dx
25
New cards
displacement
∫(a to b) v(t)dt
26
New cards
total distance
∫(a to b) |v(t)| dt
27
New cards
∫(tanu)du
\-ln|cos u|+C
28
New cards
∫(cotu)du
ln|sin u| +C
29
New cards
∫(secu)du
ln|secu+tanu|+C
30
New cards
∫(cscu)du
\-ln|cscu+cotu|+C
31
New cards
inverse derivative
(f⁻¹)’(x)=1/(f’(f⁻¹(x))
32
New cards
(d/dx)\[eⁿ\]
eⁿ+c
33
New cards
(d/dx)\[aⁿ\]
aⁿ(ln a) n’
34
New cards
(d/dx)ln u
u’/u
35
New cards
(d/dx) logₙu
u’/(u (ln n))
36
New cards
∫eⁿdn
eⁿ+C
37
New cards
∫aⁿdn
aⁿ/lna +C
38
New cards
∫(1/u)du
ln |u| +C
39
New cards
(d/dx)\[arcsin u\]
u’/√(1-u²)
40
New cards
(d/dx) \[arctan u\]
u’/(1+u²)
41
New cards
(d/dx)\[arcsecu\]
u’/(u√(u²-1))
42
New cards
(d/dx)\[arccosu\]
\-u’/√(1-u²)
43
New cards
(d/dx)\[arccotu\]
\-u’/(1+u²)
44
New cards
(d/dx) \[arccsc u\]
\-u’/(u√(u²-1))
45
New cards
∫(1/√(a²-u²))du
arcsin (u/a) +C
46
New cards
∫(1/(a²+u²))du
(1/a) arctan (u/a) +C
47
New cards
exponential growth/decay
if dy/dt=ky, then y=c(e^kt)
48
New cards
logistics equation
if dy/dt =ky(1-(y/L)), then y=L/(1+C(e^-kt))
49
New cards
area between two curves
∫(a to b) (top-bottom)dx OR ∫(a to b) (right-left)dy
50
New cards
volume disk method
v=π(∫(a to b) R²dx
51
New cards
Volume washer method
v=π(∫(a to b) (R²-r²)dx
52
New cards
Volume shell method
v=2π(∫(a to b) (ph)dx
53
New cards
solids of known cross-section
v=(∫(a to b) A(x)dx
54
New cards
arc length
L=∫(a to b) √(1+\[f’(x)\]²)dx
55
New cards
Surface Area
S=∫(a to b) 2πr√(1+\[f’(x)\]²)dx
56
New cards
integration by parts
∫u dv = uv-∫v du
57
New cards
Taylor Series
f(x) = f(c)+f’(c)(x-c)+f’’(c)(x-c)²/2!+…+fⁿ(c)(n-c)ⁿ/n!
58
New cards
Taylor series for e^x (centered at 0)
1+x+x²/2!+x³/3!+…+xⁿ/n! (for all real numbers)
59
New cards
Taylor series for sin x (centered at 0)
x-x³/3!+x⁵/5!-x⁷/7!+…+(-1)ⁿx²ⁿ⁺¹/(2n+1)! (for all real numbers)
60
New cards
taylor series for cos x (centered at 0)
1-x²/2!+x⁴/4!-x⁶/6!+…+(-1)ⁿx²ⁿ/(2n)! (for all real numbers)
61
New cards
power series for 1/(1-x)
1+x+x²+x³+x⁴+…+xⁿ (for -1
62
New cards
Alternating series error
error≤|Aₙ₊₁|
63
New cards
Lagrange error
error≤|fⁿ⁺¹(max)|/(n+1)!×(x-c)ⁿ
64
New cards
parametric equation slope
dy/dx= (dy/dt)/(dx/dt)
65
New cards
Parametric 2nd derivative
d²y/dx²=(d/dt)\[dy/dx\]/(dx/dt)
66
New cards
parametric speed
√\[(dx/dt)²+(dy/dt)²\]
67
New cards
parametric arc length (aka total distance
L=∫(a to b) √\[(dx/dt)²+(dy/dt)²\] dt
68
New cards
polar area
A=½∫(a to b) r²dθ
69
New cards
Polar parametrics
x=r cosθ and y=r sinθ