Results for "electrons"

Flashcards

flashcards Flashcard (154)
studied byStudied by 0 people
8 hours ago
0.0(0)
flashcards Flashcard (22)
studied byStudied by 0 people
3 days ago
0.0(0)
flashcards Flashcard (25)
studied byStudied by 0 people
4 days ago
0.0(0)
flashcards Flashcard (17)
studied byStudied by 0 people
6 days ago
0.0(0)
flashcards Flashcard (17)
studied byStudied by 0 people
6 days ago
0.0(0)
Ch 2 Chemical Compounds and Bondings Chemical bond: force of attraction between 2 atoms or 2 ions. There are 2 main types of chemical bonds: 1. Ionic bond: a bond between a metallic atom (metal) and a non-metallic atom (non-metal) in which there is a complete transfer of electrons from the metal to the non-metal. The compound which is formed is called an ionic compound. Ex.: NaCl , MgCl2, Al2O3 To write the formula of an ionic compound we use the criss-cross method (we down cross multiply the charges without the sign, only the numbers of the charges) Remark: if the charges are the same then they cancel each other in the formula so there will be one atom of the metal and one atom of the non-metal in the compound. Exercise: Write the formula of the compound which is formed between the following elements, and name each compound. a) Rb and S: b) Ca and Se: c) Al and Br: d) Na and N: - Draw a Bohr diagram to show the transfer of electrons (loss / gain) in an ionic compound. Example: Na2O (sodium oxide) Remark: The ionic bond is also described as an electrostatic force of attraction between a positive ion and a negative ion (eg: Na+ Cl- ). 2. Covalent bond: a bond between a non-metal and another non-metal in which there is a sharing of electrons between the non-metallic atoms. The compound that is formed is called a covalent or molecular compound. Molecule: 2 or more atoms (non-metallic) bonded together; the atoms can be of the same element such as O2 or of different elements such as HCl, CH4, H2O,….. We show the sharing of electrons between non-metallic atoms by using the Lewis diagram. In addition we can make intersecting circles for the atoms to show the sharing. Reminder: Lewis diagram of an atom shows only the valence electrons of that atom. Most of the atoms follow the octet rule (there are very few exceptions), that is each atom will have eight electrons in the valence shell (same as noble gases) except hydrogen will have 2 electrons after sharing (same as helium). Remark: 2 electrons that are not bonded to any other atom is called a lone pair (non-bonding pair) of electrons. Exercise: Draw lewis diagrams to show the sharing of electrons in each of the following compounds: 1. NF3 2. CH4 3. CO2 4. CCl4 5. CH2O Remark:In drawing Lewis structure, we show the bonds between the atoms and we also show all lone pairs (if present) on any atom. - Naming molecular compounds: 1: mono 2: di 3: tri 4: tetra 5: penta 6: hexa 7: hepta 8: octa 9: nona 10:deca Example: PCl5 : phosphorus pentachloride Remark: If the first element contains only one atom we don’t write mono before it; If the second element contains only one atom we have to write mono before it. Ex.: NO : nitrogen monoxide CO: carbon monoxide Exercise: Fill in the table below Name Chemical Formula diphosphorus pentoxide SO3 CO Aluminum sulfide Al2S3 SF6 Calcium oxide Lithium nitride Li3N Remark: If the compound contains a transition metal, then we have to mention the type of charge of the transition metal by inserting a roman numeral in brackets (I, II, III, IV ….) after the symbol of the transition metal. Example: Name the following compounds: - FeCl2 : Iron (II) chloride - Cu(NO3)2 : Copper (II) nitrate Remark: There are few transition metals that have only one type of charge such as zinc, nickel, and silver; in this case no roman numeral is required. Zinc : Zn+2 Silver: Ag+ Nickel: Ni+2 - ZnSO4 : zinc sulfate - AgNO3 : silver nitrate - CuSO4 : copper (II) sulfate - Co(NO3)3 : cobalt (III) nitrate Exercise: Write the formula of the following compounds. Calcium phosphate: Iron(III) hydroxide: Sodium hydroxide: Manganese(II) hydroxide: Barium sulfate: Zinc carbonate: Ammonium nitrate: Remark: We must enclose the polyatomic ion in brackets if the number after it is more than 1. Note: If the polyatomic ion that ends with the prefix –ate decreases by one oxygen atom then the prefix changes to -ite. If the prefix ending with – ite decreases by one oxygen atom then we precede the prefix by hypo, whereas if the prefix ending with – ate increases by one oxygen atom then we precede the prefix by per. Example: ClO3- is called chlorate; if we reduce one oxygen atom then the ion becomes ClO2- and is called chlorite, however if we increase by one oxygen atom then the ion becomes ClO4- and is called perchlorate; and if the chlorite is reduced by one oxygen atom then the ion becomes ClO- and is called hypochlorite. Exercise: Name the following compounds: K2SO3 : NaNO2 : Mg(ClO4)2 : LiBrO2 : - Comparison Table between ionic and covalent (molecular) compounds: property Ionic Compounds Covalent Compounds State (at room temperature) solids Solids, liquids or gases Melting point and boiling point Very high Usually low Involvement of electrons Loss and gain (transfer) of electrons Sharing of electrons Electric conductivity When dissolved in water (in solution) , electric conductivity is high
flashcards Flashcard (7)
studied byStudied by 0 people
7 days ago
0.0(0)
flashcards Flashcard (62)
studied byStudied by 0 people
8 days ago
0.0(0)
flashcards Flashcard (20)
studied byStudied by 0 people
8 days ago
0.0(0)
flashcards Flashcard (10)
studied byStudied by 0 people
10 days ago
0.0(0)
flashcards Flashcard (39)
studied byStudied by 0 people
10 days ago
0.0(0)
flashcards Flashcard (13)
studied byStudied by 0 people
11 days ago
0.0(0)
flashcards Flashcard (15)
studied byStudied by 0 people
12 days ago
0.0(0)
endomembrane system Semi-autonomous organelles Protein sorting to organelles Systems biology of cells Cell Biology & Cell Theory Cell biology: The study of individual cells and their interactions. Cell Theory (Schleiden & Schwann, with contributions from Virchow): All living organisms are composed of one or more cells. Cells are the smallest units of life. New cells arise only from pre-existing cells through division (e.g., binary fission). Origins of Life: Four Overlapping Stages Stage 1: Formation of Organic Molecules Primitive Earth conditions favored spontaneous organic molecule formation. Hypotheses on the origin of organic molecules: Reducing Atmosphere Hypothesis: Earth's early atmosphere (rich in water vapor) facilitated molecule formation. Stanley Miller’s experiment simulated early conditions, producing amino acids and sugars. Extraterrestrial Hypothesis: Organic carbon (amino acids, nucleic acid bases) may have come from meteorites. Debate exists over survival after intense heating. Deep-Sea Vent Hypothesis: Molecules formed in the temperature gradient between hot vent water & cold ocean water. Supported by experimental evidence. Alkaline hydrothermal vents may have created pH gradients that allowed organic molecule formation. Stage 2: Formation of Polymers Early belief: Prebiotic synthesis of polymers was unlikely in aqueous solutions (water competes with polymerization). Experimental evidence: Clay surfaces facilitated the formation of nucleic acid polymers and polysaccharides. Stage 3: Formation of Boundaries Protobionts: Aggregates of prebiotically produced molecules enclosed by membranes. Characteristics of a protobiont: Boundary separating the internal & external environments. Polymers with information (e.g., genetic material, metabolic instructions). Catalytic functions (enzymatic activities). Self-replication. Liposomes: Vesicles surrounded by lipid bilayers. Can enclose RNA and divide. Stage 4: RNA World Hypothesis RNA was likely the first macromolecule in protobionts due to its ability to: Store information. Self-replicate. Catalyze reactions (ribozymes). Chemical Selection & Evolution: RNA mutations allowed faster replication & self-sufficient nucleotide synthesis. Eventually, RNA world was replaced by the DNA-RNA-protein world due to: DNA providing more stable information storage. Proteins offering greater catalytic efficiency and specialized functions. Microscopy Microscopy Parameters Resolution: Ability to distinguish two adjacent objects. Contrast: Difference between structures (enhanced by special dyes). Magnification: Ratio of image size to actual size. Types of Microscopes Light Microscope: Uses light; resolution = 0.2 micrometers. Electron Microscope: Uses electron beams; resolution = 2 nanometers (100x better than light microscopes). Light Microscopy Subtypes Bright Field: Standard; light passes directly through. Phase Contrast: Amplifies differences in light phase shifts. Differential Interference Contrast (DIC): Enhances contrast for internal structures. Electron Microscopy Subtypes Transmission Electron Microscopy (TEM): Thin slices stained with heavy metals. Some electrons scatter while others pass through to create an image. Scanning Electron Microscopy (SEM): Heavy metal-coated sample. Electron beam scans the surface, producing 3D images. Cell Structure & Function Determined by matter, energy, organization, and information. Genome: The complete set of genetic material. Prokaryotic vs. Eukaryotic Cells Feature Prokaryotic Cells Eukaryotic Cells Nucleus ❌ Absent ✅ Present Membrane-bound organelles ❌ None ✅ Yes Size Small (1-10 µm) Large (10-100 µm) Examples Bacteria, Archaea Plants, Animals, Fungi, Protists Prokaryotic Cell Structure Plasma Membrane: Lipid bilayer barrier. Cytoplasm: Internal fluid. Nucleoid Region: DNA storage (no nucleus). Ribosomes: Protein synthesis. Cell Wall: (Some) Provides structure & protection. Glycocalyx: Protection & hydration. Flagella: Movement. Pili: Attachment. Eukaryotic Cell Structure Nucleus: Contains DNA & controls cell functions. Organelles: Rough ER: Protein synthesis & sorting. Smooth ER: Lipid synthesis, detoxification. Golgi Apparatus: Protein modification & sorting. Mitochondria: ATP production (Powerhouse of the Cell™). Lysosomes: Digestive enzymes for breakdown & recycling. Peroxisomes: Breakdown of harmful substances. Cytoskeleton: Provides structure (microtubules, actin filaments, intermediate filaments). Plasma Membrane: Regulates transport & signaling. Endomembrane System Includes: Nucleus, ER, Golgi apparatus, lysosomes, vacuoles, and plasma membrane. Nuclear Envelope: Double membrane structure. Nuclear pores allow molecule transport. Golgi Apparatus: Modifies & sorts proteins/lipids. Packages proteins into vesicles for secretion (exocytosis). Lysosomes: Contain acid hydrolases for macromolecule breakdown. Perform autophagy (organelle recycling). Semi-Autonomous Organelles Mitochondria Function: ATP production (cellular respiration). Structure: Outer & inner membrane (inner folds = cristae for increased surface area). Mitochondrial matrix houses metabolic enzymes. Chloroplasts (Plants & Algae) Function: Photosynthesis (light energy → chemical energy). Structure: Outer & inner membrane. Thylakoid membrane (site of photosynthesis). Contains chlorophyll. Endosymbiosis Theory Mitochondria & chloroplasts evolved from free-living bacteria that were engulfed by an ancestral eukaryotic cell. Protein Sorting & Cell Organization Co-translational sorting: Proteins destined for ER, Golgi, lysosomes, vacuoles, or secretion. Post-translational sorting: Proteins sent to nucleus, mitochondria, chloroplasts, peroxisomes. Systems Biology Studies how cellular components interact to form a functional system
flashcards Flashcard (4)
studied byStudied by 0 people
12 days ago
0.0(0)
flashcards Flashcard (17)
studied byStudied by 1 person
12 days ago
0.0(0)
flashcards Flashcard (78)
studied byStudied by 0 people
14 days ago
0.0(0)
flashcards Flashcard (17)
studied byStudied by 0 people
15 days ago
0.0(0)
flashcards Flashcard (79)
studied byStudied by 0 people
15 days ago
0.0(0)
flashcards Flashcard (148)
studied byStudied by 0 people
15 days ago
0.0(0)
flashcards Flashcard (74)
studied byStudied by 0 people
15 days ago
0.0(0)

Notes

note Note
studied byStudied by 0 people
6 minutes ago
0.0(0)
note Note
studied byStudied by 17 people
24 minutes ago
0.0(0)
note Note
studied byStudied by 0 people
27 minutes ago
0.0(0)
note Note
studied byStudied by 0 people
42 minutes ago
0.0(0)
note Note
studied byStudied by 0 people
46 minutes ago
0.0(0)
note Note
studied byStudied by 0 people
57 minutes ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
3 hours ago
0.0(0)
note Note
studied byStudied by 0 people
3 hours ago
0.0(0)
note Note
studied byStudied by 0 people
3 hours ago
0.0(0)
note Note
studied byStudied by 0 people
3 hours ago
0.0(0)

Users