Results for "Solutes"

Filters

Flashcards

Know the relationship between molecular weight and rate of diffusion The rate of diffusion is inversely proportional to the molecular weight Small weight-fast diffusion; heavy weight-slow diffusion Identify RBC’s in various solution and determine tonicity Tonicity - the ability of an extracellular solution to make water move into or out of a cell by osmosis If a cell is placed in a hypertonic solution, there will be a net flow of water out of the cell, and the cell will lose volume (shrink). A solution will be hypertonic to a cell if its solute concentration is higher than that inside the cell, and the solutes cannot cross the membrane. If a cell is placed in a hypotonic solution, there will be a net flow of water into the cell, the cell will gain volume (bigger). If the solute concentration outside the cell is lower than inside the cell, then solutes cannot cross the membrane, then the solution is hypotonic to the cell. If a cell is placed in an isotonic solution, there will be no set flow of water into or out of the cell, and the cell’s volume will remain stable. If the solute concentration outside the cell is the same as inside the cell, and the solutes cannot cross the membrane, the solution is isotonic to the cell. Homeostatic feedback loop for respiratory rate, heart rate and temperature Respiratory Rate: Stimulus : The level of carbon dioxide (CO2) in the blood increases (often due to exercise or hypoventilation) . Receptors: Chemoreceptors in the medulla oblongata, carotid arteries, and aortic arch detect changes in blood pH and CO2 levels Control Center: The medulla oblongata processes this information Effectors: Respiratory muscles (diaphragm and intercostal) adjust breathing rate and depth Response: Increased respiratory rate removes CO2 and increases O2 intake, restoring normal pH and gas levels. Heart Rate: Stimulus : Changes in blood pressure, O2, CO2, or pH levels Receptors: Baroreceptors (detect blood pressure changes) in the carotid sinus and aortic arch; chemoreceptors monitor blood chemistry Control Center: The medulla oblongata (cardiac center) processes signals Effectors : The autonomic nervous system (ANS) adjusts heart rate through the sympathetic nervous system (increases heart rate) or parasympathetic nervous system (decreases heart rate) Response : Heart rate increases during low O2 or low blood pressure (to circulate oxygen) and decreases when homeostasis is restored. Temperature Regulation Stimulus: Changes in body temperature (hyperthermia or hypothermia) Receptors: Thermoreceptors in the skin and hypothalamus detect temperature fluctuations. Control Center: The hypothalamus processes this information and signals effectors Effectors and Responses: If too hot: Blood vessels dilate (vasodilation) to release heat, and sweat glands produce sweat for cooling If too cold: Blood vessels constrict (vasoconstriction) to retain heat, and shivering generates warmth. Steps of a generic homeostatic feedback loop Stimulus : A change in the internal or external environment that disrupts homeostasis (eg. temperature change, pH levels, blood sugar levels) Sensor (Receptor) : Specialized cells or receptors detect the change and send information to the control center. Control Center (Integrator): Often the brain or endocrine glands, this component processes the information from the sensors and determines the appropriate response to restore balance. Effector: This component carries out the response to the stimulus as dictated by the control center. Effectors can be muscles or glands that help to counteract the change. Response: The action taken by the effectors to restore homeostasis. This could involve increasing or decreasing a physiological process (e.g. sweating to cool down or shivering to warm up) Feedback: The results of the response are monitored. If homeostasis is restored, the system maintains its state; if not, the loop may repeat, continuing to adjust until balance is achieved. How to evaluate data to determine the set point, error, and disturbance Identify the set point The set point is the optimal level or range that the system aims to maintain. To determine the set point: Gather baseline data: Collect data over a period to understand the normal range for the variable in question (e.g. body temp., BP, blood glucose levels) Analyze Trends: Look for patterns in the data to identify the average or median value that represents the stable condition of the system. Consult Literature: Reference established physiological norms or previous studies to confirm the typical set point for the variable. Assess Disturbance A disturbance is any factor or event that causes a deviation from the set point. To evaluate disturbances: Identify External and Internal Factors: Analyze the data for any external influences (e.g. environmental changes, dietary habits) or internal changes (e.g. illness, stress) that might have impacted the variable. Quantity Disturbance: Measure the magnitude and duration of the disturbance. This can be done by comparing the data points during the disturbance against the established set point. Monitor Changes: Track how the system responds to disturbances over time to assess their impact on maintaining homeostasis. WBC types and normal distribution values/ abnormal values and what those values indicate (infections/diseases) (Never Let Monkeys Eat Bananas) Neutrophils (50-70%) - First responders to infections, especially bacterial. High levels indicate bacterial infections, inflammation, or stress. Low levels can indicate bone marrow disorders or severe infections. Lymphocytes (20-40%) - Include B cells and T cells, important for immunity. High levels can suggest viral infections or leukemia, while low levels might indicate immune deficiency. Monocytes (2-8%) - Help with cleaning up dead cells and fighting infections. High levels can be linked to chronic infections or autoimmune diseases. Eosinophils (1-4%) - Involved in allergic reactions and fighting parasites. Elevated levels may indicate allergies or parasitic infections. Basophils (0.5-1%) - Release histamine during allergic reactions. High levels might be see in allergic conditions or blood disorders. Normal WBC Count Total WBC Count: 4000-11000 cells per microliter of blood (varies slightly by lab) Leukocytosis (High WBC): Can indicate infection, inflammation, stress, or leukemia Leukopenia (Low WBC): Can result from bone marrow disorders, viral infections, or autoimmune diseases Neutrophils: Banded vs Segmented Neutrophils are the most abundant type of white blood cells and play a crucial role in fighting infections. They exist in different stages of maturation: Banded Neutrophils (“Bands”) - Immature Neutrophils Appearance: Have a curved, unsegmented nucleus (band-shaped) Normal Range: 0-6% of total WBC count (~0-700/uL) Clinical Significance: Increased Bands (Bandemia) -> Indicates an acute bacterial infection or severe stress (e.g. sepsis). The bone marrow releases immature neutrophils in response to infection. Low Bands -> Not clinically significant unless the total WBC count is low, which could suggest bone marrow suppression. Segmented Neutrophils (“Segs”) - Mature Neutrophils Appearance: Have a segmented nucleus with 2-5 lobes Normal Range: 50-70% of total WBC count (~2500-7000/uL) Clinical Significance: High Segs (Neutrophilia) -> Suggests bacterial infections, stress, chronic inflammation, or leukemia Low Segs (Neutropenia) ->Can be caused by viral infections, bone marrow disorders, chemotherapy, or autoimmune diseases. Discuss the stages of cell cycle/mitosis-which stages are longest/shortest The cell cycle is a series of events that cells go through to grow and divide. It consists of two main phases: Interphase (Longest Phase) – Preparation for division Mitosis (Shortest Phase) – Actual cell division Stages of the Cell Cycle Interphase (90% of the Cell Cycle – Longest Phase) Interphase is the period of cell growth and DNA replication. It has three subphases: G1 Phase (Gap 1) The cell grows, produces proteins, and prepares for DNA replication. Longest variable phase; some cells may stay here indefinitely (e.g., neurons in G0 phase). S Phase (Synthesis) DNA replication occurs, ensuring each daughter cell gets a complete genome. Takes about 6-8 hours in human cells. G2 Phase (Gap 2) The cell prepares for mitosis by producing proteins and organelles. Shorter than G1 but still significant in length. Mitosis: Prophase, Metaphase, Anaphase, Telophase Know proportional and inversely proportional relationships Direct (Proportional) Relationship When two quantities increase or decrease together at a constant rate, they are directly proportional. Inversely Proportional When one variable increases, the other decreases proportionally. Know relationship between molecular weight and rate of diffusion The rate of diffusion of a substance is inversely proportional to the square root of its molecular weight. Lighter molecules diffuse faster Heavier molecules diffuse slower due to greater mass. Know relationship between filtration rate and pressure of fluid or weight of fluid Filtration rate is directly proportional to the pressure or weight of the fluid driving the filtration process. Higher pressure → Higher filtration rate Lower pressure → Lower filtration rate Know why men and women blood values are different The differences in blood values between men and women are due to biological, hormonal, and physiological factors
Updated 84d ago
flashcards Flashcards (8)
BASIC STRUCTURE AND PROMINENT FUNCTIONS OF VERTEBRATE INTEGUMENT INTRODUCTION The integument or the outer cover of the body is commonly referred to as the skin. Together with its derivatives it makes up the integumentary system. It is continuous with the mucous membrane lining the mouth, eyelids, nostrils, rectum and the openings of the urino-genital ducts. The skin functions primarily to cover and protect the tissues lying beneath it. In other words, it forms the external protective covering of an animal. Forms interface between organism and external environment. Part that the predator sees first, and which offers the first line of defense. Abundantly supplied with sensory nerve endings, which are affected by environmental stimuli and play an important role in communication. General metabolism of the body, temperature regulation and water loss. Character of the skin and its derivatives shows variation in different regions of the body, in different individuals, in the same individual as age advances and in different groups of vertebrates. The type of environment whether aquatic or terrestrial is of importance in connection with these variations. The evolution of vertebrate integument is correlated with the transition of vertebrates from an aquatic to a terrestrial environment. Nevertheless, basic similarities exist in the integument of all vertebrates. INTEGUMENT PROPER In Annelids, Arthropods, integument consists of single layer of cells, the EPIDERMIS, together with an outer non-cellular CUTICLE, secreted by the cells. Annelids have a body covered with an external thin collagenous cuticle (never shed or molted). In Arthropods, the chitinous and rigid cuticle makes up the exoskeleton. Periodic shedding of this cuticle is termed Ecdysis. THE VERTEBRATE SKIN DIFFERS FROM INVERTEBRATE SKIN TWO LAYERS – Outer epidermis derived from ectoderm Inner dermis or corium of mesodermal origin. The relative amount of the two layers varies with the environment. EPIDERMIS – the epidermis is made of stratified epithelium (several layers of columnar epithelium cells). These cells are held together tightly by minute intercellular bridges found on the surface of cells. The innermost layer is stratum Malpighii or stratum germinativum placed over a thin basement membrane. These cells divide constantly to produce new cells. Move upwards, tend to become flattened, protoplasm becomes horny (keratinisation). In fishes and amphibians, this keratinised layer forms a cuticle, but in amniotes, it forms stratum corneum, of hard, horny, flat, cornified cells made largely of keratin, which is tough, waterproof and insoluble protein. It affords protection against mechanical injuries, fungal and bacterial attacks and prevents desiccation. In many Tetrapoda, this layer is shed periodically in pieces or all at once. No stratum corneum in cyclostomes and fishes (since they are fully aquatic) here the epidermis has mucous glands, secreting mucus to keep the skin slimy and protects it from bacteria. The epidermis has no blood vessels and is nourished by capillaries in the dermis. The epidermis rests on a thin basement membrane which separates it from the dermis Dermis has an outer loose layer and inner dense layer Made up of dense connective tissue having cells, muscles, blood vessels, lymph vessels, collagen and elastic fibres, and nerves. Amphibians and reptiles -collagen fibres at right angles in three planes Birds and mammals, they have an irregular arrangement. Substances pass by diffusion from the dermis to the epidermis. Skin contains pigment, if present in epidermis, it occurs as a diffuse substance or as granules. If in dermis, then in the form of granules in special branching cells called chromatophores. The pigment can either collect as a central ball making the skin lighter or spread out into all the branches making the skin darker, thus, chromatophores bring about colour variations. Chromatophores are of many kinds, Melanophores that contain brown to black pigment Lipophores or xanthophores which contain yellow red fatty pigments Iridocytes or guanophores contain crystals of guanine which reflect light. Under dermis, the skin has subcutaneous loose areolar tissue which separates the skin from the underlying muscles, it may contain fat and muscles, especially in mammals. Integument of Anamnia shows a decrease in thickness and also a decrease in the degree of ossification. These are of advantage in allowing greater mobility and in amphibians, they permit respiration by the skin. But in Amniota, the skin becomes progressively thicker to prevent loss of water and to retain body heat. STRUCTURE OF INTEGUMENT IN CYCLOSTOMATA Epidermis is multi-layered (stratified) but has no keratin. It has three types of unicellular gland cells: mucus glands (secrete mucus), club cells (scab-forming cells) and granular cells (unknown function). Below epidermis is the cutis formed of collagen and elastin fibres. Star- shaped pigment cells are also present in the cutis. STRUCTURE OF INTEGUMENT IN PISCES The epidermis has several layers of simple and thin cells, but there is no dead stratum corneum. The outermost cells are nucleated and living. The stratum Malpighii replenishes the outer layers of cells which have some keratin. Unicellular goblet or mucous gland cells are found in the epidermis, as in all aquatic animals. The mucous makes the skin slimy reducing friction between the body surface and water, protects the skin from bacteria and fungi and assists in the control of osmosis. Multicellular epidermal glands like poison glands and light producing organs may also be found. The epidermis rests on a delicate basement membrane. The dermis contains connective tissue, smooth muscles, blood vessels, nerves, lymph vessels and collagen fibres. The connective tissue fibres are generally not arranged at right angles but run parallel to the surface. Scales are embedded in the dermis and projected above the epidermal surface. The colours of fishes are due to chromatophores and iridocytes. STRUCTURE OF INTEGUMENT IN AMPHIBIA: The epidermis has several layers of cells, six to eight cells in thickness and is divisible into three layers: stratum corneum, stratum germinativum and a basal portion in contact with the basement membrane. The outermost layer is a stratum corneum, made of flattened, highly keratinised cells. Such a dead layer appears first in amphibians and is best formed in those which spend a considerable time on land. The stratum corneum is an adaptation to terrestrial life (protects body and prevents excessive loss of moisture). In ecdysis, stratum corneum is cast off in fragments or as a whole in some. (moulting / desquamation i.e., removal of unicellular sheet of stratum corneum). The dermis is relatively thin in amphibians, it is made of two layers - upper loose stratum spongiosum and a lower dense and compact stratum compactum. Connective tissue fibres run both vertically and horizontally. Blood vessels, lymph spaces, glands and nerves are abundant in the stratum spongiosum. There are two kinds of glands, multicellular mucous glands and poison glands in the dermis, but they are derivatives of the epidermis. Mucous gland produces mucus (slimy protective covering, helps in respiration). Amphibian skin is an important organ of respiration. Poison glands produce a mild but unpleasant poison which is protective. In the upper part of the dermis are chromatophores. (melanophores and lipophores) Ability of the skin for changing colour to blend with the environment is well developed. INTEGUMENT IN REPTILIA. The integument is thick and dry, it prevents any loss of water, it has almost no glands. The only glands present are scent glands for sexual activity. The epidermis has a well-developed stratum corneum well adapted to terrestrial life. The horny scales of reptiles are derived from this layer. Ecdysis is necessary to remove dead outer layers, hence scales are shed periodically in fragments or cast in a single slough as in snakes and some lizards Scales often form spines or crests. Below the epidermal scales are dermal bony plates or osteoderms in tortoises, crocodiles and some lizards (Heloderma). The dermis is thick and has an upper layer and a lower layer, upper layer has abundance of chromatophores in snakes and lizards. Lower layer has bundles of connective tissue in which collagen fibres lie at right angles. Leather of high commercial value can be prepared from the skin of many reptiles like lizards, snakes and crocodiles. Many lizards and snakes have elaborate colour patterns, they may be for concealment or as warning colours. There is marked colour change in certain lizards such as chameleon, the colour may change with the environment for concealment or it may change in courtship or threat. The ability of chameleons and some other animals to change colour is known as metachrosis. (metachromatism) In Calotes, chromatophores are controlled by the posterior lobe of pituitary whereas in chameleons they are controlled by the Autonomic Nervous System. INTEGUMENT IN BIRDS Thin, loose, dry and devoid of glands. There is only a uropygial gland at the base of the tail, its oil is used for preening (to clean and tidy its feathers with its beak) and waterproofing the feathers (aquatic birds) Epidermis is delicate except on shanks and feet where it is thick and forms epidermal scales. The rest of the body has a protective covering of epidermal feathers. The keratin producing powers of the epidermis are devoted to producing feathers and scales. The dermis is thin and has interlacing connective tissue fibres, abundant muscle fibres for moving feathers, blood vessels and nerves. The dermis has an upper and lower compact layer, between which is a vascular layer, the dermis also contains fat cells. The skin has no chromatophores. Pigment is found only in feathers and scales. Colour patterns in birds are vivid (concealment, recognition and sexual stimulation) Colours are produced partly by pigments and partly by reflection and refraction from the surface of the feathers. INTEGUMENT IN MAMMALS Skin is elastic and waterproof, much thicker than in other animals, especially the dermis is very thick and is used in making leather. Epidermis is thickest in mammals. Outer stratum corneum containing keratin, cells not dead as believed before. Below this is stratum lucidum (barrier layer), chemical called eleidin Below this stratum granulosum, darkly staining granules of keratohyalin Below this is stratum spinosum whose cells are held together by spiny intercellular bridges. Lastly stratum germinativum which rests on a basement membrane Dermis is best developed in mammals. Upper layer is papillary layer made up of elastic and collagen fibres with capillaries in-between, thrown into folds called dermal papillae, especially in areas of friction Greater lower part of dermis is reticular layer, having elastic and collagen fibres. In both layers there are blood vessels, nerves smooth muscles, certain glands tactile corpuscles and connective tissue fibres in all directions. Below dermis the subcutaneous tissue contains a layer of fat cells forming adipose tissue In the lowest layer of epidermis there are pigment granules, no pigment bearing chromatophores in mammaIs (in man, branching dendritic cells or melanoblasts) FUNCTIONS OF THE INTEGUMENT ▪ PROTECTION ▪ TEMPERATURE CONTROL ▪ FOOD STORAGE ▪ SECRETION ▪ EXCRETION ▪ SENSATION ▪ RESPIRATION ▪ LOCOMOTION ▪ DERMAL ENDOSKELETON ▪ SEXUAL SELECTION 1. Protection: The integument forms a covering of the body and is protective. It protects the body against entry of foreign bodies and against mechanical injuries. It protects the tissues against excessive loss of moisture, this is very important because both aquatic and terrestrial animals are dependent upon water in their bodies for various metabolic activities. The integument forms protective derivatives, such as scales, bony plates, layer of fat, feathers and hair which reduce the effect of injurious contacts. In some animals the skin shows protective colouration which makes the animals resemble their environment, thus, making them almost invisible to their enemies. Poison glands of toads, slippery skin of aquatic animals and an armour of spines of some mammals are protective devices of the integument. The skin forms a covering which prevents the passage of water and solutes in one of the following ways: (a) By formation of cuticle in Protochordata and embryos of fishes and amphibians, (b) By secreting a coat of mucus in fishes and aquatic amphibians, and (c) By formation of keratin layers in the epidermis of tetrapoda. Keratin is formed from the cytoplasm of degenerating cells of the epidermis which finally form a layer of horny stratum corneum. 2. Temperature Control: Heat is produced constantly by oxidation of food stuffs in tissues. This heat is distributed evenly by the circulating blood. The body heat is lost constantly with expired breath, with faeces and urine, and from the surface of the skin. The integument regulates heat and maintains a constant temperature in endothermal animals. In birds the heat is regulated by adjustment of feathers which retain a warm blanket of air, when feathers are held close to the body, they remove warm air and body cooled, when feathers are fluffed out, they keep the warm air enclosed. In mammals, constant evaporation of sweat regulates the body heat. In cold weather contraction of skin’s blood capillaries reduces the loss of body heat. In some animals, fat in the skin prevents loss of heat because it is a non-conductor of heat. 3. Food Storage: The skin stores fat in its layers as reserve food material which is used for nourishment in times of need. In whales and seals the fat of the skin forms a thick layer, called blubber which is not only reserve food but also maintains the body temperature. 4. Secretion: The skin acts as an organ of secretion. Glands of the skin are secretory. In aquatic forms there are secretory mucous glands whose secretions keep the skin moist and slippery. In mammals, sebaceous glands secrete oil which lubricates the skin and hairs. Mammary glands produce milk for nourishment of the young. In birds uropygial glands secrete oil for preening the feathers. Odours of scent glands attract the opposite sex. Lacrymal glands’ secretion wash the conjunctiva of eyeball in mammals. Ear wax (cerumen) secreted by the glands of auditory meatus greases the eardrums and avoids insects to enter the canal. 5. Excretion: The integument acts as an organ of excretion. Shedding of the corneal layer during ecdysis removes some waste substances. In mammals metabolic waste (salts, urea and water) is removed from the blood by means of sweat. Chloride secreting cells are found in gills of marine fishes. 6. Sensation: The skin is an important sense organ because it has various kinds of tactile cells and corpuscles which are sensory to touch, temperature changes, heat, cold, pressure and pain. 7. Respiration: In amphibians, the moist skin acts as an organ of respiration, in frogs the respiratory function of the skin is greater than that of the lungs. 8. Locomotion: Derivatives of the integument bring about locomotion in some animals, such as the fins of fishes aid in locomotion in water, the web of skin in the feet of frogs and aquatic birds aid in swimming, feathers of the wings and tail of birds are used for flying, and extensions of the integument forming “wings” of flying lizards, extinct pterodactyls, flying squirrels and bats. 9. Dermal Endoskeleton: The skin contributes to the endoskeleton. It forms the dermal bones of vertebrates and also forms parts of the teeth. Endoskeleton of head protects the brain and sense organs. In the body it protects the soft, tender viscera. 10. Sexual Selection: The skin acts as an organ of sexual selection. It provides the feathers of birds which often have brilliant colours which are for sexual attraction. Some integumentary glands of mammals produce odours far attracting the opposite sex. Antlers of male deer distinguish it from female. Besides the above functions, mammalian skin synthesizes the vitamin D with the help of Sebum of sebaceous glands. Brood pouches beneath skin in some fishes and amphibians protect unhatched eggs. Nasal glands of tetrapods, keep the nostrils free of dirt and water. Skin also has the power of absorption of oils, ointments, etc
Updated 98d ago
flashcards Flashcards (4)
Introduction to Tissues A. Histology=the study of tissues. B. Although studying tissues can be accomplished using a light microscope, studying cell parts often requires an electron microscope and the study of atoms and molecules can only be examined through special imaging techniques and experimental procedures. Types of Tissues A. Despite the fact the body is composed of trillions of cells, there are only about 200 different cell types. These cells in turn produce only four principle tissue types: 1. Epithelial tissues=covers exposed surfaces; lines internal passageways; and produces glandular secretions. 2. Connective tissues=fills internal spaces; provides structural support, and stores energy 3. Muscle tissues=contracts to produce active movements 4. Nervous tissue=conducts electrical impulses; detects, interprets, and responds to stimuli B. Relative contribution of the four tissue types to the overall weight of the adult body. C. Embryonic origins: There are three types of embryonic tissues from which all adult tissues are derived. a. Endoderm=gives rise to the functional linings of the digestive and respiratory tracts as well as to the associated accessory glands and organs (i.e. liver, stomach, pancreas, etc.) b. Mesoderm= gives rise to the components of the skeletal, muscular, and circulatory systems c. Ectoderm= gives rise to the epidermis of skin and all of the components of the nervous system D. Tissue Membranes 1. Mucous Membranes=composed of epithelial tissues. These membranes line body cavities that open to the exterior environment such as those of the digestive tract, respiratory tract, or urogenital tract. In all cases, these are "wet" or moist membranes because of the secretion of mucous. The moisture helps reduce friction and in many cases, facilitates absorption or secretion activities. 2. Serous Membranes=consists of a mesothelium supported by areolar tissue. These are never exposed or connected to the exterior. Serous membranes secrete transudate, or serous fluid. There are three serous membranes that line the ventral body cavity: a. Pleura=lines the chest cavity and surrounds the lungs. b. Pericardium=lines the pericardial cavity and surrounds the heart c. Peritoneum=lines the peritoneal cavity and lines the surfaces of the visceral organs 3. Cutaneous Membranes=made of stratified squamous and areolar tissue reinforced by dense irregular connective tissue. In contrast to mucous and serous membranes, cutaneous membranes are dry, relatively thick, and waterproof. 4. Synovial Membranes=line mobile joint cavities but do not cover the opposing joint surfaces. Secretes synovial fluid. Although the covering of the synovial membrane is often called an epithelium, it differs from true epithelia in four respects: it develops within a connective tissue, no basal lamina is present, gaps of up to 1 mm may separate adjacent cells, and the synovial fluid and capillaries in the underlying connective tissue are continuously exchanging fluid and solutes. Epithelial Tissues A. Functions of Epithelial Tissues 1. Epithelia provide physical protection. Epithelial tissues protect exposed and internal surfaces from abrasion, dehydration, and destruction by chemical or biological agents. 2. Epithelia control permeability. Any substance that enters or leaves the body has to cross an epithelial tissue. Some epithelia are relatively impermeable, whereas others are permeable to compounds as large as proteins. Most are capable of selective absorption or secretion. The epithelial barrier can be regulated and modified in response to various stimuli. For example, a callus forms on your hands when you do rough work for an extended period of time. 3. Epithelia provide sensation. Sensory nerves extensively innervate most epithelia. Specialize epithelial cells can detect changes in the environment and convey information about such changes to the nervous system. 4. Epithelial cells that produce secretions are called glands. Individual gland cells are often scattered among other cell types in an epithelium that may have many other functions. B. Location of Epithelial Tissues 1. Epithelia=forms sheets or layers of cells that line the body tubes, cavities, or coverings of the body surfaces. 2. Glands=formed of epithelial cells with secretory functions. Two types of glands are found in the human body: a. Endocrine glands=secrete hormones (or hormonal precursors) into the interstitial fluid or bloodstream. These glands are ductless. b. Exocrine glands=secretes non-hormonal substances (milk, wax, enzymes, oil, acids, etc.) onto external surfaces or internal passageways (ducts) that connect to the exterior. C. Characteristics of Epithelial Tissues 1. Polarity=epithelial cells possess two structurally and functionally different surfaces: a. Apical surface=free edge which faces the exterior of the body or the lumen of an internal space. b. Basal surface=attached surface which anchors the cells to adjacent tissues. 2. Supported by a basal lamina=also known as the basement membrane, is a complex structure produced by the basal surface of the epithelial cells and the underlying connective tissue. The underlying connective tissue is composed of two things: 3. Cellularity=epithelial cells are extensively interconnected so that they create an effective barrier that behaves as if it were a single cell. a. Occluding junctions=form a barrier that isolates the basolateral surfaces and deeper tissues from the contents of the lumen. At an occluding junction, the attachment is so tight that it prevents the passage of water and solutes between the cells. b. Adhesion belt=locks together the terminal webs of neighboring cells, strengthening the apical region and preventing distortion and leakage at the occluding junctions. It forms a continuous band that encircles cells and binds them together. c. Gap junctions=permits chemical communication that coordinates the activities of adjacent cells. At a gap junction, two cells are held together by interlocking junctional proteins called connexons which serve as channels that form a narrow passageway to let small molecules and ions to pass from cell to cell. d. Desmosomes=provides firm attachment between neighboring cells by interlocking their cytoskeletons. At a desmosome, the opposing plasma membranes are very strong and resist stretching and twisting. Hemidesmosomes attach the basal surface to the basement membrane. e. CAM=cell adhesion molecules; present in the adhesion belt and desmosomes; transmembrane proteins that bind to each other and to extracellular materials. 4. Avascular=epithelial tissues lack blood vessels; all nutrient and waste exchange occurs as a result of diffusion and osmosis from underlying tissues. 5. Highly innervated=epithelial tissues are supplied with many nerve endings 6. Regenerate rapidly=although the exact rate varies from one type of epithelia to another, most epithelial tissues regenerate within days (rather than weeks or years). D. Naming Epithelial Tissues 1. Almost all epithelial tissues possess a two part name where the first part of their name indicates their arrangement (number of layers) while the second part of their name indicates the shape of the cells. 2. Arrangement of epithelial tissues a. Simple=only one layer thick b. Stratified=more than one layer thick c. Pseudostratified= “false layers”; it looks like more than one layer but in fact its only one layer thick 3. Shape of epithelial cells a. Squamous=thin, flat, and somewhat irregular in shape. From the surface, they look like fried eggs lay side by side. In a sectional view, they look like a pancake with a pat of butter (indicating the nucleus). b. Cuboidal=are about as wide as they are tall; resemble hexagonal boxes with the spherical nucleus located in the center of each cell. c. Columnar=are taller than they are wide; resemble rectangles with the elongated nuclei tend to crowd into a narrow band close to the basal lamina. E. Diversity of Epithelial Tissues 1. Simple squamous epithelium a. Description: single layer of flattened cells with a disc-shaped central nuclei and sparse cytoplasm. b. Function: allows passage of materials by diffusion and filtration in sites where protection is not important. Also secretes lubricant. c. Locations: Kidney glomeruli, air sacs of lungs, capillaries, linings of heart and lymphatic system. 2. Stratified squamous epithelium a. Description: thick layers of flattened cells; often keratinized layer and a mitotic layer. b. Function: protects underlying tissues in areas subject to abrasion c. Location: non-keratinized type lines the mouth and vagina; keratinized type forms the epidermis of skin. 3. Simple cuboidal epithelium a. Description: single layer of cube-like cells with large spherical centrally located nuclei. b. Function: secretion and absorption c. Locations: Kidney tubules, ducts and secretory portions of glands, ovary surface 4. Stratified cuboidal epithelium a. Relatively rare in the human body. b. Most common along the ducts of sweat glands, mammary glands, and other exocrine glands. c. DO NOT NEED TO KNOW FOR THE LAB PRACTICAL!! 5. Simple columnar epithelium a. Description: single layer of tall cells with round to oval nuclei; some cells bear cilia; may contain goblet cells that produce mucus; may contain microvilli. b. Function: absorption; secretion of mucus and enzymes; cilia propel substances. c. Location: non-ciliated type lines digestive tract, gallbladder, and ducts from glands; ciliated type lines small bronchi, uterine tubes, and uterus. 6. Stratified columnar epithelium a. Relatively rare in the human body. b. Most often found lining large ducts such as those of the salivary glands and pancreas. c. DO NOT NEED TO KNOW FOR THE LAB PRACTICAL!! 7. Pseudostratified columnar epithelium a. Description: single layer of cells of differing heights so that nuclei are a differing levels; may contain goblet cells and bear cilia. b. Function: secretion, propulsion by ciliary action. c. Location: non-ciliated type lines male reproductive ducts; ciliated type lines much of respiratory tract. 8. Transitional epithelium a. Description: resembles both stratified squamous and stratified cuboidal. Basal cells are cuboidal or columnar; surface cells are dome shaped. b. Function: stretches readily and permits distension. c. Location: Lines uterus, bladder, and urethra F. Glandular Epithelia are Specialized for Secretion 1. Endocrine glands= “ductless” glands that produce hormones. Secrete directly into interstitial fluids or bloodstream. Examples: pituitary gland, adrenal gland, thyroid gland, etc. 2. Exocrine glands=glands possessing ducts. Exocrine glands secret their substance either on the body surfaces or within ducts. They general demonstrates one of two different modes secretion: a. Merocrine=secrete products from secretory vesicles by exocytosis. Most common type. Example: salivary glands of the oral cavity b. Holocrine=accumulate products until the cell ruptures. Destroys the cell and must be replaced by cell division. Example: sebaceous glands of the skin c. Apocrine=products accumulate within the cells then the apex of the cell pinches off packets that contain the secretion. Example: mammary gland of the breast 3. Exocrine glands are unicellular or multicellular. a. Unicellular=goblet cells that produce mucin which mixes with water to form mucus. b. Multicellular=two structural classes: i. Simple=a single duct that does not branch on its way to the secretory cells (examples: gastric glands, sebaceous glands) ii. Compound= duct divides one or more times on its way to the secretory cells (examples: duodenal glands, mammary glands and salivary glands) Connective Tissues: Supports and Protects A. Location of Connective Tissues 1. Most abundant tissue in the body. 2. Never exposed to the outside environment. B. Characteristics of Connective Tissues 1. All types of connective tissue originate from mesenchyme. 2. Connective tissues vary widely in appearance and function but all forms share three basic components: a. Specialized cells=the cells present in each type of connective tissue helps to distinguish the various types from one another. A few of the cells are listed here: i. Fibroblast cells=produce connective tissue proper ii. Chondrocytes=produce cartilage iii. Osteocytes=produce bone iv. Hemocytoblast cells=produce blood b. Extracellular proteins fibers=three primary fibers are produced in connective tissues i. Elastic fibers=slender, straight, and very stretchy. They recoil to their original length after stretching or distortion. ii. Collagen fibers=thick, straight or wavy, and often forms bundles. They are very strong and resist stretching. iii. Reticular fibers=strong fibers that form a branching network or scaffolding c. Ground substance=material that fills the space between cells and surrounds the extracellular fibers. In some connective tissues the ground substance is gel-like while in others it is liquid based and in others it is rigid or calcified. Ground substance and extracellular fibers make up the matrix of connective tissues. 3. Many types of connective tissue are highly vascular and contain sensory receptors that detect pain, pressure, temperature, and other stimuli. C. Functions of Connective Tissues 1. Establish a structural framework for the body. 2. Transport fluids and dissolved materials. 3. Protect delicate organs. 4. Support, surround, and interconnect other types of tissue. 5. Store energy reserves, especially in the form of triglycerides. 6. Defend the body from invading microorganisms. D. Diversity of Connective Tissues 1. Connective Tissue Proper=includes connective tissues with many types of cells and extracellular fibers in a gel-like ground substance. a. Loose Connective Tissues – fibers created a loose, open framework i. Areolar tissue=most common form of connective tissue proper in adults. It is the general packing material in the body. Attaches skin to underlying body parts and is sometimes called the superficial fascia. All of the cell types found in other forms of connective tissue proper can be found in areolar. ii. Adipose tissue=found deep to the skin, especially at the flanks, buttocks, and breasts. It also forms a layer that provides padding within the orbit of the eyes, in the abdominopelvic cavity, and around the kidneys. The distinction between areolar tissue and adipose is the larger number of adipocytes (fat cells). iii. Reticular tissue=found in the liver, kidney, spleen, lymph nodes, and bone marrow, where it forms a tough, flexible network that provides support and resists distortion. In reticular tissue, reticular fibers create a complex supporting network known as a stroma. Fixed macrophages and fibroblasts are present but these cells are seldom visible. DO NOT NEED TO KNOW FOR THE LAB PRACTICAL!! b. Dense Connective Tissues – fibers are densely packed together i. Dense regular=all collagen fibers are oriented parallel to each other providing strength along the axis of the collagen fibers. Found in cords (such as tendons) or sheets (ligaments). Tendons connect muscle to bones. Ligaments connect bones to bones. ii. Dense irregular=collagen fibers are non-parallel forming an interwoven network. These tissues provide strength in many directions and are particularly important in areas subjected to stress from many directions such as the dermis of the skin. iii. Elastic=when elastic fibers outnumber collagen fibers, the tissue has a springy, resilient nature that allows it to tolerate cycles of extension and recoil. This elastic tissue is bound between the vertebrae of the spinal column and the erectile tissues of the penis. DO NOT NEED TO KNOW FOR THE LAB PRACTICAL!! 2. Fluid Connective Tissues=have distinctive populations of cells suspended in a watery matrix that contains dissolved proteins. NOT ON LAB PRACTICAL! a. Blood – flows within the cardiovascular system 3. Supporting Connective Tissues=differ from connective tissue proper in have a less diverse cell population and a matrix containing much more densely packed fibers. Supporting connective tissues protect soft tissues and support the weight of part or all of the body. a. Cartilage – solid, rubbery matrix containing chondrocytes. All cartilage is surrounded by a membrane of connective tissue called the perichondrium. i. Hyaline cartilage=found connecting the ribs to the sternum, covering the articular surfaces of long bones, supporting the respiratory passageways such as the trachea, and forming the tip of the nose and part of the nasal septum. Has an amorphous matrix with few visible fibers. It provides stiff but somewhat flexible support and reduces friction between bony surfaces. ii. Elastic cartilage=found in the ear and epiglottis. Has many more elastic fibers within the matrix and is therefore more flexible. iii. Fibrous cartilage=found within the intervertebral discs, the meniscus of the knee, and pubic symphysis. Has many more collagen fibers within its matrix and is therefore very strong. b. Bone – solid, crystalline matrix containing osteocytes. All bone is surrounded by a membrane of connective tissue called the periosteum. NOT ON LAB PRACTICAL! c. Comparison of cartilage and bone. Muscle Tissue in Motion (discussed in detail in Chapter 10-11) NOT ON LAB PRACTICAL! A. Highly vascularized muscular tissue is comprised of elongated cells (called fibers) containing myofilaments (actin and myosin proteins). 
 B
Updated 130d ago
flashcards Flashcards (10)
0.00
studied byStudied by 0 people