1/48
All memorized derivatives, integrals, and formulas
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
d/dx ln x
1/x
d/dx logbx
1/xlnb
d/dx e^x
e^x
d/dx b^x
b^x lnb
d/dx sinx
cosx
d/dx cos
-sinx
d/dx tanx
sec²x
d/dx secx
secxtanx
d/dx arcsinx
1/(1-x²)^1/2
d/dx arccosx
-1/(1-x²)^1/2
d/dx arctanx
1/1+x²
integration by parts
∫u dv = uv - ∫vdu
Partial Fractions
\frac{1}{\left(cx+d\right)\left(hx+k\right)}=\frac{A}{\left(cx+d\right)}+\frac{B}{\left(hx+k\right)}
Volume of a disc
\pi\int_{a}^{b}\!r^2\,dx
Volume of a washer
\pi\int_{a}^{b}\!R^2-r^2\,dx
total distance travelled
\int_{a}^{b}\!\left|v\left(t\right)\right|\,dx
displacement
∫v(t)dt
speed
|v(t)|
d/dx f(g(x))
f’(g(x))g’(x)
d/dx (f(x))/(g(x))
\frac{f^{\prime}\left(x\right)g\left(x\right)-f\left(x\right)g^{\prime}\left(x\right)}{g\left(x\right)^2}
d/dx f(x) g(x)
f^{\prime}\left(x\right)g\left(x\right)+f\left(x\right)g^{\prime}\left(x\right)
Alt Series Error
\le\left|a_{n+1}\right| (the next term)
Lagrange Error
\le\left|\frac{f^{\left(n+1\right)}\left(c\right)\left(b-a\right)^{n+1}}{\left(n+1\right)!}\right|
McLaurin Series : e^x
1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots+\frac{x^{n}}{n!}
McLaurin Series: sinx
x-\frac{x^3}{3!}+\frac{x^5}{5!}+\cdots+\frac{\left(-1\right)^{n}x^2n+1}{\left(2n+1\right)!}
McLaurin Series: cosx
1-\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots+\frac{\left(-1\right)^{n}x^{2n}}{\left(2n\right)!}
Point Slope
y-y_1=m\left(x-x_1\right)
Logistic Growth dP/dt =
\frac{k}{M}P\left(M-P\right)
Logistic Growth: M=
carrying capacity
AROC
\frac{f\left(b\right)-f\left(a\right)}{b-a}
IROC
f^{\prime}\left(c\right)
Average Value
\frac{1}{b-a}\int_{a}^{b}\!f\left(x\right)\,dx
Intermediate Value Theorem
f(x) is cont on [a,b] , then there is a y value between f(a) and f(b)
Extreme Value Theorem
f(x) is cont of [a,b] , then f(x) must have an abs min and max on [a,b]
Arc Length (Rectangular)
\int_{a}^{b}\!\sqrt{1+f^{\prime}\left(x\right)^2}\,dx
Arc Length (Parametric)
\int_{a}^{b}\!\sqrt{x^{\prime}\left(t\right)^2+y^{\prime}\left(t\right)^2}\,dx
Speed (Parametric)
\sqrt{x^{\prime}\left(t\right)^2+y^{\prime}\left(t\right)^2}
Polar Area
\frac12\int_{a}^{b}\!r^2\,dx
r²
x²+y²
x (polar conversion)
r\cos\theta
y (polar conversion)
r\sin\theta
\theta (polar conversion)
\arctan\frac{y}{x}
Area of a trapezoid
\frac12h\left(b_1+b_2\right)
nth term test
\lim_{n\rightarrow\infty}\ne0 then diverges
Geometric Series
\sum ar^{n} |r|<1 converges |r|>= 1 diverges
p-series
\sum\frac{1}{n^{p}} p>1 converges, p<=1 diverges
Ratio Test
\lim_{n\rightarrow\infty}\left\vert\frac{a_{n+1}}{a_{n}}\right\vert<1converges,\lim_{n\rightarrow\infty}\left\vert\frac{a_{n+1}}{a_{n}}\right\vert>1diverges
Integral Test
continuous, decreasing, and positive
Which test for testing absolute convergence
Ratio, geometric, nth term