1/25
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Sat ∈ NP
True
Sat ∈ P
Open
G.I. ∈ P
Open
G.I. ∈ NP
True
Problem R ∈ P then then R ∈ NP
True
R ∈ RP then R ∈ NP
Open
P <_NP
True
P = NP
Open
NP <_P
Open
If G.I ∈! NP then P ≠NP
True
If G.I ∈! P then P ≠ NP
Open
G.I ∈ P
True
If A,B are in sets and there exists s.t x ∈ A but x ∈! B then A ≠ B
True
Halting is decidable
false
Halting is in NP
False
Satisfiablity is decidable
True
The Halting Problem is a decision problem
True
Sat ∈ P
Open
Our algorithim for Sat has worst case time complexity
False
Primality ∈ NP
True
Primality ∈ P
True
If G.I ∈ P then P = NP
Open
If Sat ∈ P then P = NP
True
If Sat ∈ P then G.I ∈ P
True
If G.I !∈ P then Sat !∈ P
True
If Sat ∈ P then G.I ∈ P
Open