1/19
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
Quadratic roots (ax^2 + bx + c = 0): sum of roots
α + β = -b/a
Quadratic roots (ax^2 + bx + c = 0): product of roots
αβ = c/a
Cubic roots (ax^3 + bx^2 + cx + d = 0): sum of roots
α + β + γ = -b/a
Cubic roots (ax^3 + bx^2 + cx + d = 0): sum of pairwise products
αβ + βγ + γα = c/a
Cubic roots (ax^3 + bx^2 + cx + d = 0): product of roots
αβγ = -d/a
Quartic roots (ax^4 + bx^3 + cx^2 + dx + e = 0): sum of roots
α + β + γ + δ = -b/a
Quartic roots (ax^4 + bx^3 + cx^2 + dx + e = 0): sum of pairwise products
αβ + αγ + αδ + βγ + βδ + γδ = c/a
Quartic roots (ax^4 + bx^3 + cx^2 + dx + e = 0): sum of triple products
αβγ + αβδ + αγδ + βγδ = -d/a
Quartic roots (ax^4 + bx^3 + cx^2 + dx + e = 0): product of roots
αβγδ = e/a
Reciprocals (quadratic)
1/α + 1/β = (α + β)/(αβ)
Reciprocals (cubic)
1/α + 1/β + 1/γ = (αβ + βγ + γα)/(αβγ)
Reciprocals (quartic)
1/α + 1/β + 1/γ + 1/δ = (αβγ + βγδ + γδα + δαβ)/(αβγδ)
Product of powers (quadratic)
α^n × β^n = (αβ)^n
Product of powers (cubic)
α^n × β^n × γ^n = (αβγ)^n
Product of powers (quartic)
α^n × β^n × γ^n × δ^n = (αβγδ)^n
Sum of squares (quadratic)
α^2 + β^2 = (α + β)^2 − 2αβ
Sum of squares (cubic)
α^2 + β^2 + γ^2 = (α + β + γ)^2 − 2(αβ + βγ + γα)
Sum of squares (quartic)
α^2 + β^2 + γ^2 + δ^2 = (α + β + γ + δ)^2 − 2(αβ + αγ + αδ + βγ + βδ + γδ)
Sum of cubes (quadratic)
α^3 + β^3 = (α + β)^3 − 3αβ(α + β)
Sum of cubes (cubic)
α^3 + β^3 + γ^3 = (α + β + γ)^3 − 3(α + β + γ)(αβ + βγ + γα) + 3αβγ