1/40
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Sin²x =
½ (1-cosx)
Cos²x=
½ (1+cosx)
Sin(2x)=
2sinxcosx
Cos(2x)
Cos²x-sin²x , 1-sin²x , 2cos²x-1
If u see 1/(b²+a²x²)
Use x=b/a tanu, dx=cosudu
If u see √(b²-a²x²)
Use x=b/a sinu , dx=cosudu
If u see √(a²-x²)
Use x=asint dx=acost
If u see √(a²+x²)
Use x=atant , dx=asec²x
If u see √(x²-a²)
Use x=asecx , dx=asecxtanx
Int. Sec²x=
Tanx
Int. Csc²x=
-cotx
Int. Secxtanx=
Secx
Int. Csccotx=
-cscx
Int. Tanx=
Ln(secx)
Int. 1/√(1+x²)=
Sin^-1x
Int. -1/√(1-x²)=
Cos^-1x
Int. 1/1+x²=
Tan^-1c
Shell method
V= 2π int. x(f(x))
Area using polar coords
A= ½ int. r²
Arc length cartesian
L= int.√(1+f’(x)²)
Arc length parametrized functions
L= int. √((x’(t)²-y’(t)²)
Arc length polar
L= int. √(r²-(r’)²)
Average value
L= 1/b-a int. f(x)
Cart to polar
r = √x²+y² , θ=tan(y/x)
Polar to cart
x=rcosθ , y=rsinθ
ET<
k(b-a)³ /12n²
ES<
k(b-a)^5 /180n^4
1/1-x
Σx^n
e^x
x^n/n!
sinx
Σ (-1)^n x^(2n+1)/(2n+1)!
cosx
Σ (-1)^n x^(2n)/(2n)!
Tan^-1x
Σ (-1)^n x^(2n+1)/2n+1
Ln(1-x)
(-1)^n-1 (x^n / n)
(1+x)k
Σ (k/n)x^n
Doubled exp
A0 × 2^(t / t0)
Halved exp
A0 × 2^(t0 / t)
Newtons law of cooling
DT/ dt = k(T-T0)
Work for spring
W=int. kxdx = ½ k(b²-a²)
Pumping fluids work
W= int. (weight density)(area)(distance)dy
Remainder for Taylor series
Rn(x)= f^{n+1}(z)(x-c)^n+1 / (n+1)!
N is, 1st term is, z is
N is how many terms there are (highest exponent)
1st term is x-c
Z is between x and c and is the max value of f^{n+1}