1/35
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
shell method: revolved around y-axis
V=2π∫p(x)h(x)dx
shell method: revolved around x-axis
V=2π∫p(y)h(y)dy
arc length
L=∫√(1+(f’(x))²dx
surface area: revolved around x-axis
S=2π∫f(x)√(1+(f’(x))²dx
surface area: revolved around y-axis
S=2π∫x√(1+(f’(x))²dx
work
W=∫F(x)dx
Hooke’s Law
F=kx
Newton’s Law
F=C/x²
Boyle’s Law
P=k/V
mass
m=force/acceleration
moment
moment=mass∙distance
moment about the origin: one-dimensional system
M0=m1x1+…+mnxn
moment about the y-axis: two-dimensional system
My=m1x1+…+mnxn
moment about the x-axis: two-dimensional system
Mx=m1y1+…+mnyn
center of mass: two-dimensional system
(x̄=My/m,ȳ=My/m) where m=m1+…+mn
moment about the y-axis: planar lamina
My=∫x(f(x)-g(x))dx
moment about the x-axis: planar lamina
Mx=∫((f(x)+g(x))/2)(f(x)-g(x))dx
center of mass: planar lamina
(x̄=My/m,ȳ=My/m) where m=∫(f(x)-g(x))gx
pressure
P=density∙depth
fluid force on a horizontal surface
F=pressure∙area
force exerted by a fluid
F=∫h(y)L(y)dy
∫(tanu)du
-ln|cosu|+C
∫(cotu)du
ln|sinu|+C
∫(secu)du
ln|secu+tanu|+C
∫(cscu)du
-ln|cscu+cotu|+C
∫(sec2u)du
tanu+C
∫(csc2u)du
-cotu+C
∫(secu∙tanu)du
secu+C
∫(cscu∙cotu)du
-cscu+C
∫du/√(1-x²)
arcsin(u/a)+C
∫du/(a²+u²)
(1/a)arctan(u/a)+C
integration by parts theorem
∫u∙dv=u∙v-∫v∙du
guidelines for choosing “u” in integration by parts
Logarithm, Inverse trigonometric, Algebraic, Trigonometric, Exponential
Pythagorean identity
sin2x+cos2x=1
power reduction formula for sin2x
sin2x=(1-cos2x)/2
power reduction formula for cos2x
cos2x=(1+cos2x)/2