1/56
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No analytics yet
Send a link to your students to track their progress
shell method: revolved around y-axis
V=2π∫p(x)h(x)dx
shell method: revolved around x-axis
V=2π∫p(y)h(y)dy
arc length
L=∫√(1+(f’(x))²dx
surface area: revolved around x-axis
S=2π∫f(x)√(1+(f’(x))²dx
surface area: revolved around y-axis
S=2π∫x√(1+(f’(x))²dx
work
W=∫F(x)dx
Hooke’s Law
F=kx
Newton’s Law
F=C/x²
Boyle’s Law
P=k/V
mass
m=force/acceleration
moment
moment=mass∙distance
moment about the origin: one-dimensional system
M0=m1x1+…+mnxn
moment about the y-axis: two-dimensional system
My=m1x1+…+mnxn
moment about the x-axis: two-dimensional system
Mx=m1y1+…+mnyn
center of mass: two-dimensional system
(x̄=My/m,ȳ=My/m) where m=m1+…+mn
moment about the y-axis: planar lamina
My=∫x(f(x)-g(x))dx
moment about the x-axis: planar lamina
Mx=∫((f(x)+g(x))/2)(f(x)-g(x))dx
center of mass: planar lamina
(x̄=My/m,ȳ=My/m) where m=∫(f(x)-g(x))gx
pressure
P=density∙depth
fluid force on a horizontal surface
F=pressure∙area
force exerted by a fluid
F=∫h(y)L(y)dy
∫(tanu)du
-ln|cosu|+C
∫(cotu)du
ln|sinu|+C
∫(secu)du
ln|secu+tanu|+C
∫(cscu)du
-ln|cscu+cotu|+C
∫(sec2u)du
tanu+C
∫(csc2u)du
-cotu+C
∫(secu∙tanu)du
secu+C
∫(cscu∙cotu)du
-cscu+C
∫du/√(1-x²)
arcsin(u/a)+C
∫du/(a²+u²)
(1/a)arctan(u/a)+C
integration by parts theorem
∫u∙dv=u∙v-∫v∙du
guidelines for choosing “u” in integration by parts
Logarithm, Inverse trigonometric, Algebraic, Trigonometric, Exponential
Pythagorean identity
sin2x+cos2x=1
power reduction formula for sin2x
sin2x=(1-cos2x)/2
power reduction formula for cos2x
cos2x=(1+cos2x)/2
sine product with different angles
sin(mx)∙sin(nx)=1/2(cos((m-n)x)-cos(m+n)x))
sine-cosine product with different angles
sin(mx)∙cos(nx)=1/2(sin((m-n)x)+sin(m+n)x))
cosine product with different angles
cos(mx)∙cos(nx)=1/2(cos((m-n)x)+cos(m+n)x))
trigonometric substitution for √(a2-x2)
x=asinθ
trigonometric substitution for √(a2+x2)
x=atanθ
trigonometric substitution for √(x2-a2)
x=asecθ
logistic differential equation form
dy/dx=ky(1-y/L)
logistic growth equation form
y=L/(1+be-kt)
At what point does a logistic growth curve increase the fastest?
when the curve reaches half its carrying capacity (L)
What is the parametric form of the derivative?
dy/dx=(dy/dt)/(dx/dt), dx/dt≠0
When does a smooth curve have a horizontal tangent line?
at t where dy/dt=0, but dx/dt≠0
When does a smooth curve have a vertical tangent line?
at t where dx/dt=0, but dy/dt≠0
What two formulas do you use to convert polar coordinates to rectangular coordinates?
x=r∙cosθ and y=r∙sinθ
What three formulas do you use to convert rectangular coordinates to polar coordinates?
r=√(x2+y2), θ=arctan(y/x) when x>0, and θ=arctan(y/x)+π when x<0
slope in polar form
dy/dx=(f(θ)cosθ+f’(θ)sinθ)/(-f(θ)sinθ+f’(θ)cosθ)
area in polar coordinates
A=1/2∫(f(θ))2 dθ
arc length in polar coordinates
L=∫√(r2+(dr/dθ)2) dθ
general expression for a geometric sequence
a1∙rn-1
sum of a convergent geometric series
S=(first term of the series)/(1-the common ratio)
limit of the nth term of a convergent series
if the sum of an converges, then (lim(n→∞))(an)=0
nth term for divergence
if (lim(n→∞))(an)≠0, then the sum of an diverges