1/115
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
y=e^x
y=e^x+5
y=e^-x
y=-e^x
y=-e^-x
y=lnx
y=ln(x+5)
y=ln(-x)
y=-lnx
y=-ln(-x)
constant rule
derivative of a constant is zero.
constant multiple rule
derivative of a constant multiplied by a fxn is the constant times the derivative of the fxn.
power rule
the derivative of x^n is n*x^(n-1), where n is a real number.
sum and difference rule
the derivative of a sum or difference of fxns is the sum or difference of their derivatives.
product rule
the derivative of a product of two fxns is the first fxn times the derivative of the second plus the second fxn times the derivative of the first.
quotient rule
derivative of a quotient of two fxns is the denom x the derivative of the num - the num x the derivative of the denom, / denom²
chain rule
differentiate the outer fxn while keeping the inner fxn the same. multiply this by the derivative of the inner function.
derivative of ex
ex itself
derivative of ax
ax ln(a)
derivative of eg(x)
eg(x) g'(x)
derivative of ag(x)
ln(a) ag(x) g’(x)
derivative of ln(x)
1/x, x>0
derivative of ln(g(x))
g'(x)/g(x)
derivative of loga(x)
1/xln(a), x>0
derivative of logag(x)
g’(x)/g(x)ln(a)
derivative of sin x
cos x
derivative of cos x
-sin x
derivative of tan x
sec2 x
derivative of csc x
-csc x cot x
derivative of sec x
sec x tan x
derivative of cot x
-csc2 x
half angle of sin2 x
1/2(1-cos(2x)) - sin s for sad, sad face :( minus
half angle of cos2 x
1/2(1+cos(2x)) - cos c for congratulations, happy face :) plus
integral power rule
add one to the exponent and bring 1/n+1 to the front
integral constant multiples rule
any constant in an integral is brought to the front
integral of exponential e
integral of exponential a
integral sums and differences
arcsin
Domain: [-1, 1]
Range: [-π/2, π/2]
arccos
Domain: [-1, 1]
Range: [0, π]
arctan
Domain: [-∞, ∞]
Range: [-π/2, π/2]
arccot x
D: (-∞,∞)
R: (0,π)
arcsec x
D: (⁻∞ , -1] U [1 , + ∞)
R: [0 , π/2) U (π/2 , π]
arccsc x
D: (⁻∞ , -1] U [1 , + ∞)
R: (-π/2, 0) U (0, π/2]
sin(x)
cos(x)
tan(x)
sec(x)
cosec(x)
cot(x)
y = x⁻²
Domain: (-ꝏ,0) U (0,ꝏ)
Range: (0,ꝏ)
y = x²
Domain: (-ꝏ,ꝏ)
Range: [0,ꝏ)
y = x³
Domain: (-ꝏ,ꝏ)
Range: (-ꝏ,ꝏ)
y = x¹/²
Domain: [0, ꝏ)
Range: [0,ꝏ)
y = x¹/³
Domain: (-ꝏ,ꝏ)
Range: (-ꝏ,ꝏ)
y = x⁻¹ or 1/x
Domain: (-ꝏ,0) U (0,ꝏ)
Range: (-ꝏ,0) U (0,ꝏ)
y = sin(x)
Domain: (-ꝏ,ꝏ)
Range: [-1,1]
y = cos(x)
Domain: (-ꝏ,ꝏ)
Range: [-1,1]
y = tan(x)
Domain: {x ≠ (2k+1)π/2}
Range: (-ꝏ,ꝏ)
y = cot(x)
Domain: {x ≠ kπ}
Range: (-ꝏ,ꝏ)
y = sec(x)
Domain: {x ≠ (2k+1)π/2}
Range: (-ꝏ,-1] U [1,ꝏ)
y = csc(x)
Domain: {x ≠ kπ}
Range: (-ꝏ,-1] U [1,ꝏ)
y = sin⁻¹(x)
Domain: [-1,1]
Range: [-π/2,π/2]
y = cos⁻¹(x)
Domain: [-1,1]
Range: [0,π]
y = tan⁻¹(x)
Domain: (-ꝏ,ꝏ)
Range: (-π/2,π/2)
y = cot⁻¹(x)
Domain: (-ꝏ,ꝏ)
Range: (0,π)
y = sec⁻¹(x)
Domain: (-ꝏ,-1] U [1,ꝏ)
Range: [0,π/2) U (π,3π/2)
y = csc⁻¹(x)
Domain: (-ꝏ,-1] U [1,ꝏ)
Range: (0,π/2) U (π,3π/2)
f(x) = bˣ, if b>1
Domain: (-ꝏ,ꝏ)
Range: (0,ꝏ)
f(x) = bˣ, if 0 < b < 1
Domain: (-ꝏ,ꝏ)
Range: (0,ꝏ)
f(x) = logb(x), b > 1
Domain: (0,ꝏ)
Range: (0,ꝏ)
f(x) = logb(x), 0 < b < 1
Domain: (0,ꝏ)
Range: (0,ꝏ)
Linear function
f(x)= Mx + b
Quadratic / Square function
F(x) = x²
Cubic function
F(x)= x³
Square root function
F(x) = √x
Cube root function
F(x) = 3√x
Reciprocal / Rational function (Odd)
F(x)= 1/x or f(x) = 1/x^n → n is an odd number
Absolute value function
F(x) = | x |
Exponential function
F(x) = e^x
Natural logarithmic function
F(x) = ln(x)
Polynomial function
Tangent function
F(x) = tan(x)
Cosine function
F(x) = cos(x)
Sine function
F(x) = sin(x)
Reciprocal/ Rational function (Even)
F(x) = 1/x² or f(x) = 1/x^n → n is an even number
Identity
y = x
Squaring
y = x^2
Cubing
y = x^3
Exponential
y = e^x
Absolute Value
y = |x|
Reciprocal
y = 1/x
Square Root
y = square root(x)
Logistic
y = 1/1 + e^-x
Greatest Integer
y = [x]
Natural Log
y = ln x
Sin
y = sin x
Cosine
y = cos x
3 functions that don't
have all real numbers as domain
Square root, natural log, reciprocal
Domain (-infinity, 0) U (0, infinity)
Reciprocal