1/67
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Definition of e
e = lim_{n→∞}(1 + 1/n)^n
Absolute value
|x| = x if x ≥ 0; |x| = -x if x < 0
Definition of the derivative
f'(x) = lim_{h→0} [f(x+h) - f(x)] / h
Alternate derivative form
f'(a) = lim_{x→a} [f(x) - f(a)] / (x - a)
Continuity
f is continuous at c if f(c) exists, lim f(x) exists, and both are equal
Average rate of change
(f(b) - f(a)) / (b - a)
Average value of a function
(1 / (b - a)) ∫_a^b f(x) dx
Rolle's Theorem
If f is continuous on [a,b], differentiable on (a,b), and f(a)=f(b), then f'(c)=0
Mean Value Theorem
f'(c) = (f(b) - f(a)) / (b - a)
Intermediate Value Theorem
If f is continuous on [a,b], it hits every value between f(a) and f(b)
sin(2x)
2 sin x cos x
cos(2x)
cos²x - sin²x
cos(2x) alternate
1 - 2 sin²x
cos(2x) alternate
2 cos²x - 1
sin²x
(1 - cos(2x)) / 2
cos²x
(1 + cos(2x)) / 2
Derivative power rule
d/dx[x^n] = n x^{n-1}
Product rule
(fg)' = f'g + fg'
Quotient rule
(u/v)' = (v u' - u v') / v²
Derivative of sin u
( sin u )' = cos u · u'
Derivative of cos u
( cos u )' = -sin u · u'
Derivative of tan u
( tan u )' = sec²u · u'
Derivative of cot u
( cot u )' = -csc²u · u'
Derivative of sec u
( sec u )' = sec u tan u · u'
Derivative of csc u
( csc u )' = -csc u cot u · u'
Derivative of ln u
(ln u)' = u'/u
Derivative of a^u
(a^u)' = a^u ln(a) · u'
Derivative of e^u
(e^u)' = e^u u'
Derivative of arcsin u
u' / √(1 - u²)
Derivative of arccos u
Derivative of arctan u
u' / (1 + u²)
Derivative of arccot u
Derivative of arcsec u
u' / (|u| √(u² - 1))
Derivative of arccsc u
Inverse function derivative
(f^{-1})'(a) = 1 / f'(f^{-1}(a))
∫ sin u du
∫ cos u du
sin u + C
∫ sec²u du
tan u + C
∫ csc²u du
∫ sec u tan u du
sec u + C
∫ csc u cot u du
∫ du/u
ln|u| + C
∫ tan u du
∫ cot u du
ln|sin u| + C
∫ sec u du
ln|sec u + tan u| + C
∫ csc u du
∫ e^{au} du
(1/a) e^{au} + C
∫ a^u du
a^u / ln(a) + C
∫ du / √(a² - u²)
arcsin(u/a) + C
∫ du / (a² + u²)
(1/a) arctan(u/a) + C
∫ du / (u √(u² - a²))
(1/a) arcsec(|u|/a) + C
Critical number
c is critical if f'(c)=0 or undefined
First derivative test
−→+ gives min, +→− gives max
Second derivative test
f''(c)>0 min; f''(c)<0 max
Concavity (definition)
Concave up if f' increasing; concave down if f' decreasing
Concavity test
f''>0 concave up; f''<0 concave down
Inflection point
Where f'' changes sign
FTC Part 1
∫_a^b f(x) dx = F(b) - F(a)
FTC Part 2
d/dx ∫_a^x f(t) dt = f(x)
FTC chain rule
d/dx ∫_a^{g(x)} f(t) dt = f(g(x)) g'(x)
Volume (disks)
V = π ∫ [r(x)]² dx
Volume (washers)
V = π ∫ ([R(x)]² - [r(x)]²) dx
Volume (shells)
V = 2π ∫ r(y) p(y) dy
Volume (cross-sections)
V = ∫ A(x) dx
Velocity
v(t) = s'(t)
Acceleration
a(t) = v'(t) = s''(t)
Displacement
∫ v(t) dt
Total distance
∫ |v(t)| dt