ap calc bc

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/67

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

68 Terms

1
New cards

Definition of e

e = lim_{n→∞}(1 + 1/n)^n

2
New cards

Absolute value

|x| = x if x ≥ 0; |x| = -x if x < 0

3
New cards

Definition of the derivative

f'(x) = lim_{h→0} [f(x+h) - f(x)] / h

4
New cards

Alternate derivative form

f'(a) = lim_{x→a} [f(x) - f(a)] / (x - a)

5
New cards

Continuity

f is continuous at c if f(c) exists, lim f(x) exists, and both are equal

6
New cards

Average rate of change

(f(b) - f(a)) / (b - a)

7
New cards

Average value of a function

(1 / (b - a)) ∫_a^b f(x) dx

8
New cards

Rolle's Theorem

If f is continuous on [a,b], differentiable on (a,b), and f(a)=f(b), then f'(c)=0

9
New cards

Mean Value Theorem

f'(c) = (f(b) - f(a)) / (b - a)

10
New cards

Intermediate Value Theorem

If f is continuous on [a,b], it hits every value between f(a) and f(b)

11
New cards

sin(2x)

2 sin x cos x

12
New cards

cos(2x)

cos²x - sin²x

13
New cards

cos(2x) alternate

1 - 2 sin²x

14
New cards

cos(2x) alternate

2 cos²x - 1

15
New cards

sin²x

(1 - cos(2x)) / 2

16
New cards

cos²x

(1 + cos(2x)) / 2

17
New cards

Derivative power rule

d/dx[x^n] = n x^{n-1}

18
New cards

Product rule

(fg)' = f'g + fg'

19
New cards

Quotient rule

(u/v)' = (v u' - u v') / v²

20
New cards

Derivative of sin u

( sin u )' = cos u · u'

21
New cards

Derivative of cos u

( cos u )' = -sin u · u'

22
New cards

Derivative of tan u

( tan u )' = sec²u · u'

23
New cards

Derivative of cot u

( cot u )' = -csc²u · u'

24
New cards

Derivative of sec u

( sec u )' = sec u tan u · u'

25
New cards

Derivative of csc u

( csc u )' = -csc u cot u · u'

26
New cards

Derivative of ln u

(ln u)' = u'/u

27
New cards

Derivative of a^u

(a^u)' = a^u ln(a) · u'

28
New cards

Derivative of e^u

(e^u)' = e^u u'

29
New cards

Derivative of arcsin u

u' / √(1 - u²)

30
New cards

Derivative of arccos u

  • u' / √(1 - u²)
31
New cards

Derivative of arctan u

u' / (1 + u²)

32
New cards

Derivative of arccot u

  • u' / (1 + u²)
33
New cards

Derivative of arcsec u

u' / (|u| √(u² - 1))

34
New cards

Derivative of arccsc u

  • u' / (|u| √(u² - 1))
35
New cards

Inverse function derivative

(f^{-1})'(a) = 1 / f'(f^{-1}(a))

36
New cards

∫ sin u du

  • cos u + C
37
New cards

∫ cos u du

sin u + C

38
New cards

∫ sec²u du

tan u + C

39
New cards

∫ csc²u du

  • cot u + C
40
New cards

∫ sec u tan u du

sec u + C

41
New cards

∫ csc u cot u du

  • csc u + C
42
New cards

∫ du/u

ln|u| + C

43
New cards

∫ tan u du

  • ln|cos u| + C
44
New cards

∫ cot u du

ln|sin u| + C

45
New cards

∫ sec u du

ln|sec u + tan u| + C

46
New cards

∫ csc u du

  • ln|csc u + cot u| + C
47
New cards

∫ e^{au} du

(1/a) e^{au} + C

48
New cards

∫ a^u du

a^u / ln(a) + C

49
New cards

∫ du / √(a² - u²)

arcsin(u/a) + C

50
New cards

∫ du / (a² + u²)

(1/a) arctan(u/a) + C

51
New cards

∫ du / (u √(u² - a²))

(1/a) arcsec(|u|/a) + C

52
New cards

Critical number

c is critical if f'(c)=0 or undefined

53
New cards

First derivative test

−→+ gives min, +→− gives max

54
New cards

Second derivative test

f''(c)>0 min; f''(c)<0 max

55
New cards

Concavity (definition)

Concave up if f' increasing; concave down if f' decreasing

56
New cards

Concavity test

f''>0 concave up; f''<0 concave down

57
New cards

Inflection point

Where f'' changes sign

58
New cards

FTC Part 1

∫_a^b f(x) dx = F(b) - F(a)

59
New cards

FTC Part 2

d/dx ∫_a^x f(t) dt = f(x)

60
New cards

FTC chain rule

d/dx ∫_a^{g(x)} f(t) dt = f(g(x)) g'(x)

61
New cards

Volume (disks)

V = π ∫ [r(x)]² dx

62
New cards

Volume (washers)

V = π ∫ ([R(x)]² - [r(x)]²) dx

63
New cards

Volume (shells)

V = 2π ∫ r(y) p(y) dy

64
New cards

Volume (cross-sections)

V = ∫ A(x) dx

65
New cards

Velocity

v(t) = s'(t)

66
New cards

Acceleration

a(t) = v'(t) = s''(t)

67
New cards

Displacement

∫ v(t) dt

68
New cards

Total distance

∫ |v(t)| dt