AS Maths practice question methods

0.0(0)
studied byStudied by 1 person
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/41

flashcard set

Earn XP

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

42 Terms

1
New cards
term image
  • the tangent has the same gradient and the same point of intersection as the curve

  • Differentiate the equation and sub in x=2 for the x value, find the gradient

  • Sub gradient and point into equation of a line and solve for y=mx+c

  • Answer = y=20x-27

<ul><li><p>the tangent has the same gradient and the same point of intersection as the curve</p></li><li><p>Differentiate the equation and sub in x=2 for the x value, find the gradient</p></li><li><p>Sub gradient and point into equation of a line and solve for y=mx+c</p></li><li><p>Answer = y=20x-27</p></li></ul>
2
New cards
term image
  • a) draw a diagram and the angle to find

  • Find the direction vector

  • Calculate the angle using trigonometry

  • Add 180 to find total bearing

  • Answer = 246.8

  • b) speed is distance over time

  • Find distance (magnitude) using direction vector

  • Convert time (keep in hours)

  • Sub into equation

  • Answer = 2.77

<ul><li><p>a) draw a diagram and the angle to find</p></li><li><p>Find the direction vector</p></li><li><p>Calculate the angle using trigonometry</p></li><li><p>Add 180 to find total bearing</p></li><li><p>Answer = 246.8</p></li><li><p>b) speed is distance over time</p></li><li><p>Find distance (magnitude) using direction vector</p></li><li><p>Convert time (keep in hours)</p></li><li><p>Sub into equation</p></li><li><p>Answer = 2.77</p></li></ul>
3
New cards
term image
  • a) rearrange to make x the subject by factorising out x

  • Rationalise the denominator

  • Simplify fully

  • Answer = 6+3[2

  • b) change so 2 is the base on either side

  • Make powers equal and solve

  • Answer = 5/12

<ul><li><p>a) rearrange to make x the subject by factorising out x </p></li><li><p>Rationalise the denominator </p></li><li><p>Simplify fully </p></li><li><p>Answer = 6+3[2</p></li><li><p>b) change so 2 is the base on either side </p></li><li><p>Make powers equal and solve </p></li><li><p>Answer = 5/12</p></li></ul>
4
New cards
term image
knowt flashcard image
5
New cards
term image
  • a) use sine rule to find angle

  • Angle found is 51.1, but the angle in question is obtuse

  • Use sin rule for second value (180-51.1)

  • Answer = 128.9

  • b) label all sides, use cosine rule to find AD

  • Find angle DCB

  • DCB = CDB

  • CBD = 77.8

  • Use to find angle ABD to find total length AD

  • Add 12+7+7 to find total length then round up

  • Answer = 42m

<ul><li><p>a) use sine rule to find angle </p></li><li><p>Angle found is 51.1, but the angle in question is obtuse </p></li><li><p>Use sin rule for second value (180-51.1)</p></li><li><p>Answer = 128.9</p></li><li><p>b) label all sides, use cosine rule to find AD </p></li><li><p>Find angle DCB </p></li><li><p>DCB = CDB </p></li><li><p>CBD = 77.8 </p></li><li><p>Use to find angle ABD to find total length AD </p></li><li><p>Add 12+7+7 to find total length then round up </p></li><li><p>Answer = 42m </p></li></ul>
6
New cards
term image
  • a) use binomial expansion

  • Answer = 1+10kx+45k²x²+120k³x³

  • b) 120k³=30k

  • Divide by k. k²=1/4

  • Answer= k=+1/2, -1/2

<ul><li><p>a) use binomial expansion </p></li><li><p>Answer = 1+10kx+45k²x²+120k³x³</p></li><li><p>b) 120k³=30k</p></li><li><p>Divide by k. k²=1/4</p></li><li><p>Answer= k=+1/2, -1/2</p></li></ul>
7
New cards
term image
  • a) simplify the bracket , =(5/2x^-1/2+3)

  • Differentiate = 5x^1/2+3x

  • Expand using k and 1 to get 5[k+3k-12=0

  • b) sub in x=[k

  • = 3x²+5x-12=0

  • Expand our algebraically

  • (3x-4)(x+3)

  • [k=4/3 or -3

  • Reject -3, negative root

  • k=16/9

<ul><li><p>a) simplify the bracket , =(5/2x^-1/2+3)</p></li><li><p>Differentiate = 5x^1/2+3x</p></li><li><p>Expand using k and 1 to get 5[k+3k-12=0</p></li><li><p>b) sub in x=[k</p></li><li><p>= 3x²+5x-12=0</p></li><li><p>Expand our algebraically </p></li><li><p>(3x-4)(x+3)</p></li><li><p>[k=4/3 or -3</p></li><li><p>Reject -3, negative root </p></li><li><p>k=16/9</p></li></ul>
8
New cards
term image
  • a) t=0, so e^0 =1

  • 65×1 = 65

  • So angle = 18+65=83

  • Answer =83

  • b) 35=18+65e^-t/8

  • e^-t/8=17/65

  • Take ln of both sides

  • -t/8=ln(17/65)

  • t=-8ln(17/65)

  • answer = 10.7

  • c) t is infinite, e^-t/8 is 0

  • So 65×0=0

  • Answer= minimum temp is 18 degrees which is higher than 15

  • d) sub points into the equation where x=t and y=u

  • Solve using simultaneous equations, form a third equation by using 1-2

  • Find B

  • Sub into original equation 1

  • find A (answer)

  • Answer= 5e-94/e-1

<ul><li><p>a) t=0, so e^0 =1</p></li><li><p>65×1 = 65</p></li><li><p>So angle = 18+65=83 </p></li><li><p>Answer =83</p></li><li><p>b) 35=18+65e^-t/8</p></li><li><p>e^-t/8=17/65</p></li><li><p>Take ln of both sides </p></li><li><p>-t/8=ln(17/65)</p></li><li><p>t=-8ln(17/65)</p></li><li><p>answer = 10.7 </p></li><li><p>c) t is infinite, e^-t/8 is 0 </p></li><li><p>So 65×0=0 </p></li><li><p>Answer= minimum temp is 18 degrees which is higher than 15 </p></li><li><p>d) sub points into the equation where x=t and y=u</p></li><li><p>Solve using simultaneous equations, form a third equation by using 1-2 </p></li><li><p>Find B </p></li><li><p>Sub into original equation 1 </p></li><li><p>find A (answer) </p></li><li><p>Answer= 5e-94/e-1</p></li></ul>
9
New cards
term image
  • a) the minimum of cosx=-1

  • So the minimum of 3cosx=-3, so y=-3

  • P is the first minimum for x<0 so c=-180

  • Answer = P(-180,-3)

  • b) i) in bracket so effects x

  • Times x by 4

  • Answer = (-720,-3)

  • ii) inside bracket so effects x, x+36

  • Answer = (-144,-3)

  • c) list trig identities

  • Sub in gradient identity and simplify

  • Sub in the other trig function cos²0=1-sin²0

  • Make into quadratic and factorise

  • Reject value -3 as min value is -1

  • Use sin0=1/3

  • Angle is 19.47

  • Find second value using 180-

  • Add 360 to find within range

  • Answer = 520.5

<ul><li><p>a) the minimum of cosx=-1</p></li><li><p>So the minimum of 3cosx=-3, so y=-3</p></li><li><p>P is the first minimum for x&lt;0 so c=-180</p></li><li><p>Answer = P(-180,-3)</p></li><li><p>b) i) in bracket so effects x </p></li><li><p>Times x by 4 </p></li><li><p>Answer = (-720,-3)</p></li><li><p>ii) inside bracket so effects x, x+36</p></li><li><p>Answer = (-144,-3)</p></li><li><p>c) list trig identities </p></li><li><p>Sub in gradient identity and simplify </p></li><li><p>Sub in the other trig function cos²0=1-sin²0</p></li><li><p>Make into quadratic and factorise </p></li><li><p>Reject value -3 as min value is -1</p></li><li><p>Use sin0=1/3</p></li><li><p>Angle is 19.47 </p></li><li><p>Find second value using 180- </p></li><li><p>Add 360 to find within range </p></li><li><p>Answer = 520.5 </p></li></ul>
10
New cards
term image
  • a) sub x=5 into the equation and solve to prove equals 0

  • Make a concluding statement

  • Answer = (x-5) is a factor as g(5)=0 so g(x) is divisible by (x-5)

  • b) divide using polynomial division ax2+bx+c and x-5

  • Find values a b and c

  • Write quadratic and sub into calculator to find x values

  • Answer = (2x+7)(x-5)(x+2)

  • c) find roots from previous answer and y intercept from equation

  • Sketch a graph and label region R

  • Integrate the equation

  • Sub in 5 and -2

  • Calculate (5)-(-2)

  • Answer as exact value and +ve

  • Answer = 1715/3

<ul><li><p>a) sub x=5 into the equation and solve to prove equals 0 </p></li><li><p>Make a concluding statement </p></li><li><p>Answer = (x-5) is a factor as g(5)=0 so g(x) is divisible by (x-5) </p></li><li><p>b) divide using polynomial division ax2+bx+c and x-5</p></li><li><p>Find values a b and c </p></li><li><p>Write quadratic and sub into calculator to find x values </p></li><li><p>Answer = (2x+7)(x-5)(x+2)</p></li><li><p>c) find roots from previous answer and y intercept from equation </p></li><li><p>Sketch a graph and label region R </p></li><li><p>Integrate the equation </p></li><li><p>Sub in 5 and -2 </p></li><li><p>Calculate (5)-(-2) </p></li><li><p>Answer as exact value and +ve</p></li><li><p>Answer = 1715/3</p></li></ul>
11
New cards
term image
  • i) expand back out into x and y brackets to find the centre of the circle

  • Point (-9,1)

  • The radius and tangent are perpendicular so find gradient

  • Gradient between (-9,1) and (-5,7) is 3/2

  • So gradient if tangent is -2/3

  • Sub into equation if a line with point

  • In form ax+by+c=0

  • Answer= 2x+3y-11=0

  • ii) fourth quadrant so need the centre of c2

  • Expand new equation out to find point

  • Centre (4,-6)

  • If it lies entirely in one quadrant it doesn’t cross the axes so the radius has to be less than 4

  • r<4 so 52-k<4²

  • k>36

  • r>0 as lengths can’t be negative so 52-k>0

  • Answer = 36<k<52

<ul><li><p>i) expand back out into x and y brackets to find the centre of the circle</p></li><li><p>Point (-9,1)</p></li><li><p>The radius and tangent are perpendicular so find gradient</p></li><li><p>Gradient between (-9,1) and (-5,7) is 3/2</p></li><li><p>So gradient if tangent is -2/3</p></li><li><p>Sub into equation if a line with point</p></li><li><p>In form ax+by+c=0</p></li><li><p>Answer= 2x+3y-11=0</p></li><li><p>ii) fourth quadrant so need the centre of c2</p></li><li><p>Expand new equation out to find point</p></li><li><p>Centre (4,-6)</p></li><li><p>If it lies entirely in one quadrant it doesn’t cross the axes so the radius has to be less than 4</p></li><li><p>r&lt;4 so 52-k&lt;4²</p></li><li><p>k&gt;36</p></li><li><p>r&gt;0 as lengths can’t be negative so 52-k&gt;0</p></li><li><p>Answer = 36&lt;k&lt;52</p></li></ul>
12
New cards
term image
knowt flashcard image
13
New cards
term image
knowt flashcard image
14
New cards
term image
knowt flashcard image
15
New cards
term image
knowt flashcard image
16
New cards
term image
knowt flashcard image
17
New cards
term image
knowt flashcard image
18
New cards
term image
knowt flashcard image
19
New cards
term image
knowt flashcard image
20
New cards
term image
knowt flashcard image
21
New cards
term image
knowt flashcard image
22
New cards
term image
knowt flashcard image
23
New cards
term image
knowt flashcard image
24
New cards
term image
knowt flashcard image
25
New cards
term image
knowt flashcard image
26
New cards
term image
knowt flashcard image
27
New cards
term image
knowt flashcard image
28
New cards
term image
knowt flashcard image
29
New cards
term image
30
New cards
term image
knowt flashcard image
31
New cards
term image
knowt flashcard image
32
New cards
term image
33
New cards
term image
knowt flashcard image
34
New cards
term image
knowt flashcard image
35
New cards
term image
knowt flashcard image
36
New cards
term image
knowt flashcard image
37
New cards
term image
knowt flashcard image
38
New cards
term image
knowt flashcard image
39
New cards
term image
knowt flashcard image
40
New cards
term image
knowt flashcard image
41
New cards
term image
knowt flashcard image
42
New cards
term image
knowt flashcard image