all the formulas i could think of for the ap physics 1 exam + units
kinematic equation #1 (vf=)
vf=vi+at
kinematic equation #2 (vf²=)
vf²=vi²+2aΔx
kinematic equation #3 (Δx=)
Δx=vit+1/2at²
kinematic equation #4 (Δx=)
Δx=1/2(vi+vf)t
displacement (d)
d=vt
velocity (v)
v=Δx/t
acceleration (a)
a=v/t
Net Force (ΣF, newton’s second law)
ΣF=ma
static friction (fs)
f≤μFn
kinetic friction (fk)
f=μFn
Universal law of gravitation (Fg=)
Fg=G(m1m2/r²)
surface gravity of a planet (not earth)
g=GM/R²
θ(rad)
arclength/rad
convert to Δθ
Δx/r
convert to ω
v/r
convert to α
a/r
angular velocity (ω)
ω=2π/T
tangential velocity (vT)
2πr/T
centripetal acceleration (ac)
ac=v²/r
tangential acceleration
at=rα
total acceleration
atot=√ac²+at²
circular net force
ΣF=mv²/r
gravitational force between two objects
F=GMm/r²
orbital velocity
v=√GM/r
spring force equation (Fs)
Fs=-kx
kinetic energy
KE=1/2mv²
gravitational potential energy
Ug=mgh
Net Work (Wnet)
Wnet=ΔK=1/2mvf²-1/2mvi²
spring potential energy (Usp)
Usp=1/2kx²
power
P=W/t
work (W)
W=F∥Δx
avg speed
avg d/avg t
average velocity
Δx/Δt
instantaneous velocity
Δx/Δt (where t gets infinitely small)
weight (Fg)
Fg=mg
instantaneous angular speed
ω=Δθ/Δt (where t gets infinitely small)
average angular speed
ω=Δθ/Δt
Kepler’s Law
T²=(4π²/GM)r³ » T²∝r³
find net force using momentum
ΣF=Δp/Δt
impulse/change in momentum (impulse-momentum theorum)
Δp=ΣFΔt
law of conservation of momentum
mAvAi+mBvBi=mAvAf+mBvBf
recoil collision (begin together, move apart)
mAvAf=-mBvBf
perfectly inelastic collision (begin apart, stick together)
mAvAi+mBvBi=(mA+mB)vf
elastic collision (objects collide but dont lose KE)
vAi+vAf=vBi+vBf
center of mass distance
xcom=m1x1+m2x2/m1+m2
velocity of center of mass
vcom=m1v1+m2v2/m1+m2
acceleration of a harmonic oscilator (spring)
a=-(k/m)x
angular frequency (rate of change of angular displacement)
ω=2πf
period of an oscillating spring
T=2π√m/k
period of an oscillating pendulum
T=2π√L/g
max displacement of an oscillating spring (xmax)
xmax=±A
max velocity of an oscillating spring (vmax)
vmax=±A√k/m
max acceleration of an oscillating spring (amax)
amax=±A(k/m)
acceleration of a harmonic oscillator (pendulum)
a=(g/L)x
torque formula
τ=F⊥r
moment of inertia
I=Σmr²
Newton’s second law of rotation
τ=Iα
angluar momentum (L)
L=Iω
rotational kinetic energy
KR=1/2(Iω²)
angular impluse-momentum
Στ⋅t=ΔL=Iωf-Iωi
conservation of energy while rolling
Ug=KT+KR
Unit of Force
Newton (N=kg⋅m/s²)
Unit of Frequency
Hertz (Hz)
Unit of Distance
Meter (m)
Unit of Time
Second (s)
Unit of Velocity
m/s
Unit of Acceleration
m/s²
Unit for Coefficient of Friction (μ)
No Units
Unit for Angular Displacement
Rad
Units for Angular Velocity
rad/s
Units for Angular Acceleration
rad/s²
velocity of an object in uniform circular motion (v)
v=2πr/T
total acceleration of a rotating object (non-UCM)
atot=√ac²+at²
maximum velocity at which you can go around a circle
v≤√rgμ
velocity of an object on a simple circular pendulum
v=√rgtanθ
Unit of Energy
Joules (J=(kg⋅m²)/s²)
Unit of Power
Watt (W=(kg⋅m²)/s³)
Unit of Momentum
kg⋅m/s
Unit for a spring constant (k)
N/m
frequency formula
f=1/T
angular velocity of an object oscillating on a pendulum
ω=√g/L
Unit for Torque
N⋅m
Newton’s second law (torque)
τ = mr2α
Unit for Angular Momentum (L)
kg⋅m²/s
velocity of an object that starts at rest and ends at zero level (conservation of energy)
v=√2gh
acceleration in an atwood’s machine
a=(m1-m2)⋅g/m1+m2