1/39
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
∫sin x dx
-cos x + c
∫cos x dx
sin x + c
∫sec^2 x dx
tan x + c
∫sec x tan x dx
sec x + c
d/dx sin x
cos x
d/dx cos x
-sin x
d/dx tan x
sec^2 x
d/dx sec x
sec x tan x
∫tanx dx
ln|secx| + C
∫secx dx
ln|secx + tanx| + C
∫ cos^2x dx
1/2x+1/4sin2x + C
∫ sin^2x dx
1/2x - 1/4sin2x + C
∫ e^x dx
e^x + C
∫ a^x dx
a^x/ln a +C
∫ 1/x dx
ln|x| +C
∫ coshx dx
sinhx + C
∫ sinhx dx
coshx + C
d/dx logb(x)
1/x ln(b)
∫e^x + 1/x dx
e^x + ln|x| + C
Average Value Theorem
MVT for Integrals: f(c)=f ave
if the bounds are switch in a definite integral
the definite integral becomes negative
a(t) = v'(t) dt, thus
v(t) = ∫ a(t)
net change theorem
Definite Integrals w/ u-substitution
always be sure to change the bounds from values of x to values of u
Hooke's Law
states the the force required to maintain a spring stretched x units beyond its natural length is proportional to x:
f(x) = k x , where k is a positive 'spring' constant
1) Force given in problem, is f(x)
2) x is the length given
3) if its given in inches, always convert to feet (e.g 4 inches=1/3 feet)
Use definite integral to solve, setting a=0 and b=length in which you're solving for
Find c such that f(c)=f ave
Change integral from f(x) to f(c) to find c
d/dx 1/x
-x⁻² = -(1/x²)
d/dx 5^(-1/x)
d/dx 2^(sinπx)
Using Chain Rule property d/dx aⁿ = aⁿ (ln a)
y' and y" cos(x²)
d/dx (cosx)² = 2(cosx)(-sinx) = -2(cosx)(sinx) = -sin(2x) (double angle identity)
d/dx -sin(2x) = -cos(2x)(2) = -2(cos(2x))
d/dx tan⁻¹
1/(1+x²)
d/dx cos⁻¹
-1/(√1-x²)
d/dx sin⁻¹
1/(√1-x²)
d/dx cot
-csc²x
d/dx cscx
-cscx cotx
∫ e(^x+e^x)
Use u-substitution
u=e^x
du=e^x dx
∫ e^u du = e^u + c = e^(e^x)+c
∫ e²
e²x + c
∫1/(1+eⁿ) dx
-ln|e⁻ⁿ+1|+C
multiply num. and den. by e⁻ⁿ and let u=e⁻ⁿ+1
f is continuous and ₁∫³ f(x) dx=8, show that f takes on the value 4 at least once in the interval [1,3]
8 = f(c)(3-1)
8 = f(c)(2)
8/2 = f(c) = 4
According to the FTC1 ⁿ∫₁ 1/(t³+1)dt equals?
1/(n³+1)
F'(x) = d/dx [ⁿ∫₁ 1/(t³+1) dt] = f(x)
v(t) = ∫ a(t) dt, thus
d(t) = ∫ v(t) dt