Name 4 eda(Explore Data Libraries)
import pandas as pd
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
Name 6 Models from Scikit-Learn (estimators/models)
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import make_pipeline
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
Name 5 Model Evaluators used split the data, tune the data and get your classificatin metrics
# split data into training and test sets
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
from sklearn.metrics import confusion_matrix, classification_report
# classification metrics
from sklearn.metrics import precision_score, recall_score, f1_score
from sklearn.metrics import RocCurveDisplay
Give an example of how to import and show data from a file using Pandas
dataframe = pd.read_csv("data/heart-disease.csv")
dataframe.head(1)