1/45
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Sin^2x
1-cos2x/2
Cos^2x
1+cos2x/2
Tan^2x
1-cos2x/1+cos2x
Csc^2x
2/1-cos2x
Sec^2x
2/1+cos2x
Cot^2x
1+cos2x/1-cos 2x
=2sinxcosx
Double-Angle formula for sine: sin2x
=cos²x - sin²x
=1-2sin²x
=2cos²x - 1
3 Double-Angle formulas for cosine: cox2x
=+/-√1-cosu/2
Half-Angle Formula: sinu/2
=±√1+cosu/2
Half-Angle Formula: cosu/2
=1-cosu/sinu
=sinu/1+cosu
2 Half-Angle Formulas: tanu/2
domain [-1,1] and range [-π/2, π/2], arcsine, arcsin
Define the Inverse Sine Function
it is the function cos⁻¹ with domain [-1,1] and range [0, π]. Also called arccosine(arccos)
Define the Inverse Cosine Function
it is the function tan⁻¹ with domain R and range (-π/2, π/2). Also called arctangent, arctan
Define the Inverse Tangent Function
ksin(x+Φ)
Sums of Sines and Cosines: when Asinx+Bcosx, then _______ by letting k=√A²+B² and cosΦ=A/K, sinΦ=B/K
2tanu/1-tan²u
Double-Angle Formula for tan2u
cos(A-B) =
cosAcosB+sinAsinB
cos(A+B) =
cosAcosB-sinAsinB
sin(A-B) =
sinAcosB-cosAsinB
sin(A+B) =
sinAcosB+cosAsinB
tan(A-B) =
(tanA-tanB)/(1+tanAtanB)
tan(A+B) =
(tanA+tanB)/(1-tanAtanB)
sin(2A) =
2sinAcosA
cos(2A) =
cos^2A-sin^2A
cos(2A) in all cos^2A =
2cos^2A-1
cos(2A) in all sin^2A =
1-2sin^2A
tan(2A)
(2tanA)/(1-tan^2A)
sin^2A in terms of cosA =
(1-cos(2A))/(2)
cos^2A in terms of cosA =
(1+cos(2A))/(2)
sin(A/2)
+- squareroot((1-cosA)/(2))
cos(A/2)
+- squareroot((1+cosA)/(2))
sin²θ+cos²θ
1
1-cos²θ
sin²θ
1-sin²θ
cos²θ
tan²θ+1
sec²θ
tan²θ-sec²θ
-1
sec²θ-1
tan²θ
1+cot²θ
csc²θ
cot²θ-csc²θ
-1
csc²θ-1
cot²θ
Sin (Pi/2 - x)
Cos x
Csc (Pi/2 - x)
Sec x
Sec (Pi/2 - x)
Csc x
Cos (Pi/2 - x)
Sin x
Tan (Pi/2 - x)
Cot x
Cot (Pi/2 - x)
Tan x