Fundamental Trig Identities

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/45

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

46 Terms

1
New cards

Sin^2x

1-cos2x/2

2
New cards

Cos^2x

1+cos2x/2

3
New cards

Tan^2x

1-cos2x/1+cos2x

4
New cards

Csc^2x

2/1-cos2x

5
New cards

Sec^2x

2/1+cos2x

6
New cards

Cot^2x

1+cos2x/1-cos 2x

7
New cards

=2sinxcosx

Double-Angle formula for sine: sin2x

8
New cards

=cos²x - sin²x

=1-2sin²x

=2cos²x - 1

3 Double-Angle formulas for cosine: cox2x

9
New cards

=+/-√1-cosu/2

Half-Angle Formula: sinu/2

10
New cards

=±√1+cosu/2

Half-Angle Formula: cosu/2

11
New cards

=1-cosu/sinu

=sinu/1+cosu

2 Half-Angle Formulas: tanu/2

12
New cards

domain [-1,1] and range [-π/2, π/2], arcsine, arcsin

Define the Inverse Sine Function

13
New cards

it is the function cos⁻¹ with domain [-1,1] and range [0, π]. Also called arccosine(arccos)

Define the Inverse Cosine Function

14
New cards

it is the function tan⁻¹ with domain R and range (-π/2, π/2). Also called arctangent, arctan

Define the Inverse Tangent Function

15
New cards

ksin(x+Φ)

Sums of Sines and Cosines: when Asinx+Bcosx, then _______ by letting k=√A²+B² and cosΦ=A/K, sinΦ=B/K

16
New cards

2tanu/1-tan²u

Double-Angle Formula for tan2u

17
New cards

cos(A-B) =

cosAcosB+sinAsinB

18
New cards

cos(A+B) =

cosAcosB-sinAsinB

19
New cards

sin(A-B) =

sinAcosB-cosAsinB

20
New cards

sin(A+B) =

sinAcosB+cosAsinB

21
New cards

tan(A-B) =

(tanA-tanB)/(1+tanAtanB)

22
New cards

tan(A+B) =

(tanA+tanB)/(1-tanAtanB)

23
New cards

sin(2A) =

2sinAcosA

24
New cards

cos(2A) =

cos^2A-sin^2A

25
New cards

cos(2A) in all cos^2A =

2cos^2A-1

26
New cards

cos(2A) in all sin^2A =

1-2sin^2A

27
New cards

tan(2A)

(2tanA)/(1-tan^2A)

28
New cards

sin^2A in terms of cosA =

(1-cos(2A))/(2)

29
New cards

cos^2A in terms of cosA =

(1+cos(2A))/(2)

30
New cards

sin(A/2)

+- squareroot((1-cosA)/(2))

31
New cards

cos(A/2)

+- squareroot((1+cosA)/(2))

32
New cards

sin²θ+cos²θ

1

33
New cards

1-cos²θ

sin²θ

34
New cards

1-sin²θ

cos²θ

35
New cards

tan²θ+1

sec²θ

36
New cards

tan²θ-sec²θ

-1

37
New cards

sec²θ-1

tan²θ

38
New cards

1+cot²θ

csc²θ

39
New cards

cot²θ-csc²θ

-1

40
New cards

csc²θ-1

cot²θ

41
New cards

Sin (Pi/2 - x)

Cos x

42
New cards

Csc (Pi/2 - x)

Sec x

43
New cards

Sec (Pi/2 - x)

Csc x

44
New cards

Cos (Pi/2 - x)

Sin x

45
New cards

Tan (Pi/2 - x)

Cot x

46
New cards

Cot (Pi/2 - x)

Tan x