Derivatives in Calculus

0.0(0)
studied byStudied by 2 people
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/19

flashcard set

Earn XP

Description and Tags

In this set of flashcards are all the derivatives and rules you need to know in AP Calculus AB.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

20 Terms

1
New cards

\cos(u)\cdot\frac{du}{dx}

\frac{d}{dx}\left(\sin(u)\right)=

2
New cards

-\sin(u)\cdot\frac{du}{dx}

\frac{d}{dx}\left(\cos(u)\right)=

3
New cards

\sec^{2}(u)\cdot\frac{du}{dx}

\frac{d}{dx}\left(\tan(u)\right)=

4
New cards

\sec(u)\tan(u)\cdot\frac{du}{dx}

\frac{d}{dx}\left(\sec(u)\right)=

5
New cards

-\csc^{2}(u)\cdot\frac{du}{dx}

\frac{d}{dx}\left(\cot(u)\right)=

6
New cards

-\csc(u)\cot(u)\cdot\frac{du}{dx}

\frac{d}{dx}\left(\csc(u)\right)=

7
New cards

n\cdot x^{n-1}

\frac{d}{dx}\left(x^{n}\right)=

8
New cards

n\cdot u^{n-1}\cdot\frac{du}{dx}

\frac{d}{dx}\left(u^{n}\right)=

9
New cards

g\left(x\right)f^{\prime}\left(x\right)+f\left(x\right)g^{\prime}\left(x\right)

\frac{d}{dx}\left(f(x)\cdot g(x)\right)=

10
New cards

\frac{g\left(x\right)f^{\prime}\left(x\right)-f\left(x\right)g^{\prime}\left(x\right)}{g(x)^2}

\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right)=

11
New cards

f’(g(x))\cdot g’(x)

\frac{d}{dx}\left(f(g(x))\right)=

12
New cards

\ln(a)\cdot a^x

\frac{d}{dx}\left(a^{x}\right)=

13
New cards

\ln(a)\cdot a^{u}\cdot\frac{du}{dx}

\frac{d}{dx}\left(a^{u}\right)=

14
New cards

e^{u}\cdot\frac{du}{dx}

\frac{d}{dx}\left(e^{u}\right)=

15
New cards

\frac{1}{u}\cdot \frac{du}{dx}

\frac{d}{dx}\left(\ln(u)\right)=

16
New cards

\frac{1}{\ln(b)\cdot u}\cdot \frac{du}{dx}

\frac{d}{dx}\left(\log_{b}(u)\right)=

17
New cards

\frac{1}{f’\left(f^{-1}(x)\right)}

\frac{d}{dx}\left(f^{-1}(x)\right)=

18
New cards

\frac{1}{\sqrt{1-u^{2}}}\cdot\frac{du}{dx}

\frac{d}{dx}\left(\arcsin(u)\right)=

19
New cards

-\frac{1}{\sqrt{1-u^2}}\cdot\frac{du}{dx}

\frac{d}{dx}\left(\arccos(u)\right)=

20
New cards

\frac{1}{1+u^{2}}\cdot\frac{du}{dx}

\frac{d}{dx}\left(\arctan(u)\right)=