Results for "Prolactin"

Filters

Flashcards

Prolactin
Updated 21d ago
flashcards Flashcards (38)
prolactin pathway
Updated 23d ago
flashcards Flashcards (4)
Infant Development (chapter 2) Alcohol Favorite toy as a transitional Baby’s wants and needs are the same thing Non-emotion induced tears- see two things water and salt. Emotion induced tears- water, salt,endorphins, and endoxified protiens. Toxins and endorphins reduce stress. Prolactin and oxytocin (frequency, duration, intensity) Egotistical response Bioevolutionary speaking crying is a survival instinct. Babies absorb about 10 times radiation than adults. Closer chromosomes with female chimp than a human male. culture dictates how much time we spend with our babies. Bowlby said that culture is so powerful that it can override instincts. Behaviorism theory can say that instinct do not exist in humans. About 77% of infants (12 m) 40 or more hours a week. About 8 of our babies are not raised with their parents. It matters how we raise our kids, because they will grow up and make choices for us. About 75%-80% of women said they were working for personal fulfillment. Women would rather be at work than be with their children at home. Snowball effect- To be able to read those cues, it takes times. so when you don’t spend time with them you wont pick up their cues. Quality time involves quantity. Having kid at work can also be counted as quality because they can still ask questions and make memories. It’s just about the amount of time you spend. They have the highest turnover rates than any other job Cultural feminist- belief that women are superior than men because they will never do things that women could. Feminism-men and women should be treated equally. Formula is digestible and allows you to sleep longer but when awake stomach hurts Ferberize a baby to make them sleep longer. Works for any age, put in crib, pat their back (3 time) and turn off lights and leave room Come back 20 minutes and pat back again and leave without turning light on. Next night 21, 22, 23, and increase each night. Can leave baby alone because they are starving and also since they don’t have a sense of time (they think you leave forever) We spoil babies (holding too much, pick up when crying) 1912 We spoil babies the exact why we spoil fruit, (leave them alone) Anecetipmen is also to ADHD, brain is not receiving signals Day 2 Relational play- understanding what goes with what. Stranger anxiety- you like people you don’t know at all (8-9 months) Categorical anxiety- they don’t like glasses etc. Visual cliff- she was born knowing not to go off cliff. Strange situation test- You can not measure attachment Other countries when given money for having a baby only have one baby. ( Sweden) Independence cannot be taught. Our need for sleep that drives what happens to our babies 80% world’s co-sleeping because everyone sleeps better. Moms slept with babies in the past. Needs have never changed for babies from very first baby to the ones present. According Erickson the first year is where we determine if the word is a safe place. Emotional needs for babies are as important as their physical needs. Letting a child cry it out is perceived as child abuse in other countries. You can be taken to jail and/or ticketed. (Other cultures) Formula feeding is super convenient 88% of white educated American pediatricians In American in curbs where SIDS occurred the most Royal rode to the unconscious - you will deal with the hard stuff when you are awake. Boy and girls develop differently All around the world, all babies start using words at 12 months If not start using words 12 months then might check hearing. Nouns are the first words Chomsky ( are speaking is innate) Talking to us or someone to talk for us The more you’re talked to the more you are verbal fluently The word no Bali is a country where babies that are perceived to be devine Refuse to babies on the ground up until the first 6 months 6 months ceremony 6 months can crawl, and sit up Breastfeeding, staying close proximity, co-sleeping Wearing your baby much more likely to read their cues Make them scared of the whole world Developmentally appropriate More child is held the happier they are, more nursed she will be happier (oxytocin, prolactin) We call this an ancient physiological interdependence. Advanced motor skill, more vertigo Baby is learning through the mothers experience Instinct Less crying ( more time together) Non-medicated births, baby-led breastfeeding, co-sleeping Colic can be withdrawal- formula fed - stomach issues - co-sleeping— miss mom Motor skills- body doing everything the mother is doing Lower vertigo, because you get a workout Separated from their mothers they cry Higher self esteem, they are more self -reliant- lower rates of anxiety and depression Strong sense of self Mesozoic era Two types of mammals -caching hide their young to protect them while they go look for food. Their babies can remain silent for long periods of time Their milk is very very high is protein very high is fat Caring mammals- their young are born helpless, they can’t regulate body temperature, they need constant contact with their mom for protection, their milk is low in fat and low in protein designed for continuous and on demand feeding Humans are caring mammals Monkeys, apes, Pigmies - long term breastfeeding 4-5 years Learn from experiences Babies worn long term !Kung- very very tall people They breastfeed 4-5 years Not having babies often Very sexual people Master gland- nursing often, gland stays silent Breastfeeding becomes spaced not they can have a child Not having periods Sleep 4-7 hours, period comes Baby nursing almost all the time It’s nutritional and its medicinal, and attachment formation More the baby suckle the more milk you make What kind of birth control pill- cannot breastfeed on birth control About 200 years ago the crib was introduced According to John bowlby separation form attachment figure can be physiological damaging Bowlbys primary attachment theory Tears and constant waiting for mom to return Very sad, no affect, low affect Deattachment- know she’s not going to come back Can be long term, Can impair child’s ability to form loving relationships Internal working model is our prototype for all later relationship Bowlby hypothesized in the 1940s that separation from mother can leave to chronic anxiety and depression It is impossible to measure neurotransmitters of a brain of a living human The number one cause of disability is depression Babies don’t have a concept to time Existential sense of self Dichotomy of the public and private sphere Is where you nurture and raise children Family was a man and a women and their children Three types of women Those that have to be mothers They love kids, they want take them back to their parents She doesn’t want kids, doesn’t like them Bought a house 10.5 years after they got married 600 and 25 ft 28 years old car Few months after marriage Car is no 20 years old It is not 600 and 25 ft If we breastfed for 12 months and you save 7,
Updated 30d ago
flashcards Flashcards (23)
GH and prolactin
Updated 73d ago
flashcards Flashcards (16)
Endocrine System 1. What are hormones and what is their function in the body? Hormones are chemical messengers transported in the bloodstream that stimulate physiological responses in target cells or organs. 2. Types of hormones Endocrine System 1. What are hormones and what is their function in the body? Hormones are chemical messengers transported in the bloodstream that stimulate physiological responses in target cells or organs. 2. Types of hormones based on chemical composition and how they enter target cells: • Steroid hormones: Lipid-soluble, diffuse through cell membrane (e.g., cortisol). • Protein/Peptide hormones: Water-soluble, bind to surface receptors (e.g., insulin). • Biogenic/Monoamines: Derived from amino acids (e.g., T3/T4), may need carriers or membrane receptors. 3. Know all 6 hormones secreted by the anterior pituitary gland and their functions: • TSH: Stimulates thyroid to release T3 and T4. • ACTH: Stimulates adrenal cortex to release cortisol. • GH: Stimulates tissue growth and protein synthesis. • PRL: Stimulates milk production. • FSH: Stimulates egg maturation/sperm production. • LH: Triggers ovulation and testosterone production. 4. What is thymosin? Which gland secretes it? What is its function? Thymosin is secreted by the thymus and helps in the development and maturation of T-cells. 5. Know thyroid gland hormones, the cells that secrete them, and their functions: • T3 & T4 (follicular cells): Increase metabolism and regulate appetite. • Calcitonin (C cells): Lowers blood calcium levels. 6. Know the hormones secreted by the adrenal gland and their specific functions: • Cortex: • Aldosterone: Retains Na⁺, excretes K⁺, raises blood pressure. • Cortisol: Increases glucose, metabolism of fat/protein. • Androgens: Precursor to sex hormones. • Medulla: • Epinephrine/Norepinephrine: Increase heart rate, blood flow, and alertness. 7. Function of glucagon and insulin in maintaining homeostasis: • Insulin (beta cells): Lowers blood glucose. • Glucagon (alpha cells): Raises blood glucose. • Antagonistic: They have opposing effects to balance blood sugar levels. 8. Which cells are involved in spermatogenesis? Where does sperm production occur? • Sertoli (Sustentacular) cells support spermatogenesis. • Leydig (Interstitial) cells produce testosterone. • Occurs in the seminiferous tubules of the testes. 9. Know the hormones secreted by the testes and their functions: • Testosterone: Stimulates male development and sperm production. • Inhibin: Inhibits FSH to regulate sperm production. 10. What causes diabetes insipidus? How is it different from diabetes mellitus? • Diabetes insipidus: ADH deficiency → excessive urination. • Diabetes mellitus: Insulin issues → high blood glucose. 11. Know the 3 “P’s” of diabetes: • Polyuria: Excessive urination. • Polydipsia: Excessive thirst. • Polyphagia: Excessive hunger. 12. How are oxytocin and prolactin different? • Oxytocin: Stimulates uterine contractions and milk letdown. • Prolactin: Stimulates milk production. 13. Name the ovarian hormones and their functions: • Estrogen/Progesterone: Regulate cycle, pregnancy, and secondary sex characteristics. • Inhibin: Inhibits FSH secretion. ⸻ Muscle Physiology 14. Know 3 muscle types, their locations, and function: • Skeletal: Attached to bones; movement; voluntary. • Cardiac: Heart; pumps blood; involuntary. • Smooth: Organs/vessels; propels substances; involuntary. 15. Know the layers surrounding muscle: • Epimysium: Surrounds entire muscle. • Perimysium: Surrounds fascicle (bundle). • Endomysium: Surrounds individual fiber. 16. What is a fascicle? A bundle of muscle fibers. 17. What is a sarcomere? Name its regions: Smallest contractile unit (Z-disc to Z-disc). • Z-band, A-band (dark), I-band (light), H-zone. 18. What are actin and myosin? • Actin: Thin filament. • Myosin: Thick filament that pulls actin during contraction. 19. What is troponin and tropomyosin? • Tropomyosin blocks binding sites on actin. • Troponin binds Ca²⁺ to move tropomyosin and expose sites. 20. What is a motor unit? A motor neuron and all muscle fibers it controls. 21. Role of T-Tubule, SR, Terminal Cisternae: • T-Tubule: Conducts AP into cell. • SR: Stores calcium. • Terminal cisternae: Release calcium. 22. Which neurotransmitter is released at the neuromuscular junction? Acetylcholine (ACh). 23. What role does Ca²⁺ play in muscle physiology? Binds troponin, moves tropomyosin, exposes actin sites. 24. What happens to Ca²⁺ after action potential ends? Reabsorbed into SR by Ca²⁺ ATPase pump. 25. What is the function of ATP in muscle physiology? Powers myosin movement, detachment, and Ca²⁺ reuptake. 26. What is sliding filament theory? Myosin pulls actin filaments → sarcomere shortens → contraction. 27. What are DHP and Ryanodine receptors and their roles? • DHP: Voltage sensor in T-tubule. • Ryanodine: Releases Ca²⁺ from SR. 28. What is the function of AChE? Breaks down ACh to stop stimulation and contraction. 29. Difference between isotonic and isometric contractions: • Isotonic: Muscle changes length (shortens/lengthens). • Isometric: Muscle length stays same; tension builds. ⸻ Respiratory Physiology 30. Difference between conductive and respiratory divisions: • Conductive: Air passageways (nose to bronchioles). • Respiratory: Gas exchange (alveoli). 31. Type I & II alveolar cells and functions: • Type I: Gas exchange. • Type II: Secretes surfactant, repairs alveoli. 32. Dust cells and their functions: Alveolar macrophages that clean up particles/debris. 33. Muscles in relaxed vs. forced respiration: • Relaxed inhale: Diaphragm, external intercostals. • Forced inhale: Accessory neck muscles. • Forced exhale: Internal intercostals, abdominals. 34. What happens to pressure and volume when inhaling/exhaling? • Inhale: Volume ↑, pressure ↓. • Exhale: Volume ↓, pressure ↑. 35. Difference between systemic and pulmonary exchange: • Systemic: Gas exchange at tissues. • Pulmonary: Gas exchange in lungs. 36. What cells are involved in carrying gases? Red blood cells (RBCs). 37. Which enzyme converts CO₂ + H₂O → H₂CO₃? Carbonic anhydrase. 38. What does carbonic acid break into? H⁺ + HCO₃⁻ (bicarbonate ion). 39. What happens in hypoxia (low oxygen)? • ↓O₂, ↑CO₂, ↓pH (acidosis). 40. What happens in hypercapnia (high CO₂)? • ↑CO₂, ↓O₂, ↓pH (acidosis). 41. Receptors for blood pH and their locations: • Central (CSF pH): Medulla oblongata. • Peripheral (O₂, CO₂, pH): Carotid & aortic bodies. 42. CO₂ loading & O₂ unloading at tissues: • CO₂ enters blood → forms HCO₃⁻. • O₂ released to tissues. 43. CO₂ unloading & O₂ loading at alveoli: • CO₂ released from blood to lungs. • O₂ binds to hemoglobin. 44. Brain part for unconscious breathing: Medulla oblongata. 45. Obstructive vs. restrictive disorders + example: • Obstructive: Narrowed airways (asthma). • Restrictive: Reduced lung expansion (fibrosis). 46. Know spirometry volumes (not numbers): • Tidal volume, • Inspiratory/Expiratory reserve volume, • Residual volume, • Vital capacity, • Total lung capacity, • Inspiratory capacity, • Functional residual capacity. 47. Define eupnea, dyspnea, tachypnea, apnea, Kussmaul respiration: • Eupnea: Normal breathing. • Dyspnea: Labored breathing. • Tachypnea: Rapid, shallow breathing. • Apnea: No breathing. • Kussmaul: Deep, rapid (from acidosis Endocrine System 1. What are hormones and what is their function in the body? Hormones are chemical messengers transported in the bloodstream that stimulate physiological responses in target cells or organs. 2. Types of hormones based on chemical composition and how they enter target cells: • Steroid hormones: Lipid-soluble, diffuse through cell membrane (e.g., cortisol). • Protein/Peptide hormones: Water-soluble, bind to surface receptors (e.g., insulin). • Biogenic/Monoamines: Derived from amino acids (e.g., T3/T4), may need carriers or membrane receptors. 3. Know all 6 hormones secreted by the anterior pituitary gland and their functions: • TSH: Stimulates thyroid to release T3 and T4. • ACTH: Stimulates adrenal cortex to release cortisol. • GH: Stimulates tissue growth and protein synthesis. • PRL: Stimulates milk production. • FSH: Stimulates egg maturation/sperm production. • LH: Triggers ovulation and testosterone production. 4. What is thymosin? Which gland secretes it? What is its function? Thymosin is secreted by the thymus and helps in the development and maturation of T-cells. 5. Know thyroid gland hormones, the cells that secrete them, and their functions: • T3 & T4 (follicular cells): Increase metabolism and regulate appetite. • Calcitonin (C cells): Lowers blood calcium levels. 6. Know the hormones secreted by the adrenal gland and their specific functions: • Cortex: • Aldosterone: Retains Na⁺, excretes K⁺, raises blood pressure. • Cortisol: Increases glucose, metabolism of fat/protein. • Androgens: Precursor to sex hormones. • Medulla: • Epinephrine/Norepinephrine: Increase heart rate, blood flow, and alertness. 7. Function of glucagon and insulin in maintaining homeostasis: • Insulin (beta cells): Lowers blood glucose. • Glucagon (alpha cells): Raises blood glucose. • Antagonistic: They have opposing effects to balance blood sugar levels. 8. Which cells are involved in spermatogenesis? Where does sperm production occur? • Sertoli (Sustentacular) cells support spermatogenesis. • Leydig (Interstitial) cells produce testosterone. • Occurs in the seminiferous tubules of the testes. 9. Know the hormones secreted by the testes and their functions: • Testosterone: Stimulates male development and sperm production. • Inhibin: Inhibits FSH to regulate sperm production. 10. What causes diabetes insipidus? How is it different from diabetes mellitus? • Diabetes insipidus: ADH deficiency → excessive urination. • Diabetes mellitus: Insulin issues → high blood glucose. 11. Know the 3 “P’s” of diabetes: • Polyuria: Excessive urination. • Polydipsia: Excessive thirst. • Polyphagia: Excessive hunger. 12. How are oxytocin and prolactin different? • Oxytocin: Stimulates uterine contractions and milk letdown. • Prolactin: Stimulates milk production. 13. Name the ovarian hormones and their functions: • Estrogen/Progesterone: Regulate cycle, pregnancy, and secondary sex characteristics. • Inhibin: Inhibits FSH secretion. ⸻ Muscle Physiology 14. Know 3 muscle types, their locations, and function: • Skeletal: Attached to bones; movement; voluntary. • Cardiac: Heart; pumps blood; involuntary. • Smooth: Organs/vessels; propels substances; involuntary. 15. Know the layers surrounding muscle: • Epimysium: Surrounds entire muscle. • Perimysium: Surrounds fascicle (bundle). • Endomysium: Surrounds individual fiber. 16. What is a fascicle? A bundle of muscle fibers. 17. What is a sarcomere? Name its regions: Smallest contractile unit (Z-disc to Z-disc). • Z-band, A-band (dark), I-band (light), H-zone. 18. What are actin and myosin? • Actin: Thin filament. • Myosin: Thick filament that pulls actin during contraction. 19. What is troponin and tropomyosin? • Tropomyosin blocks binding sites on actin. • Troponin binds Ca²⁺ to move tropomyosin and expose sites. 20. What is a motor unit? A motor neuron and all muscle fibers it controls. 21. Role of T-Tubule, SR, Terminal Cisternae: • T-Tubule: Conducts AP into cell. • SR: Stores calcium. • Terminal cisternae: Release calcium. 22. Which neurotransmitter is released at the neuromuscular junction? Acetylcholine (ACh). 23. What role does Ca²⁺ play in muscle physiology? Binds troponin, moves tropomyosin, exposes actin sites. 24. What happens to Ca²⁺ after action potential ends? Reabsorbed into SR by Ca²⁺ ATPase pump. 25. What is the function of ATP in muscle physiology? Powers myosin movement, detachment, and Ca²⁺ reuptake. 26. What is sliding filament theory? Myosin pulls actin filaments → sarcomere shortens → contraction. 27. What are DHP and Ryanodine receptors and their roles? • DHP: Voltage sensor in T-tubule. • Ryanodine: Releases Ca²⁺ from SR. 28. What is the function of AChE? Breaks down ACh to stop stimulation and contraction. 29. Difference between isotonic and isometric contractions: • Isotonic: Muscle changes length (shortens/lengthens). • Isometric: Muscle length stays same; tension builds. ⸻ Respiratory Physiology 30. Difference between conductive and respiratory divisions: • Conductive: Air passageways (nose to bronchioles). • Respiratory: Gas exchange (alveoli). 31. Type I & II alveolar cells and functions: • Type I: Gas exchange. • Type II: Secretes surfactant, repairs alveoli. 32. Dust cells and their functions: Alveolar macrophages that clean up particles/debris. 33. Muscles in relaxed vs. forced respiration: • Relaxed inhale: Diaphragm, external intercostals. • Forced inhale: Accessory neck muscles. • Forced exhale: Internal intercostals, abdominals. 34. What happens to pressure and volume when inhaling/exhaling? • Inhale: Volume ↑, pressure ↓. • Exhale: Volume ↓, pressure ↑. 35. Difference between systemic and pulmonary exchange: • Systemic: Gas exchange at tissues. • Pulmonary: Gas exchange in lungs. 36. What cells are involved in carrying gases? Red blood cells (RBCs). 37. Which enzyme converts CO₂ + H₂O → H₂CO₃? Carbonic anhydrase. 38. What does carbonic acid break into? H⁺ + HCO₃⁻ (bicarbonate ion). 39. What happens in hypoxia (low oxygen)? • ↓O₂, ↑CO₂, ↓pH (acidosis). 40. What happens in hypercapnia (high CO₂)? • ↑CO₂, ↓O₂, ↓pH (acidosis). 41. Receptors for blood pH and their locations: • Central (CSF pH): Medulla oblongata. • Peripheral (O₂, CO₂, pH): Carotid & aortic bodies. 42. CO₂ loading & O₂ unloading at tissues: • CO₂ enters blood → forms HCO₃⁻. • O₂ released to tissues. 43. CO₂ unloading & O₂ loading at alveoli: • CO₂ released from blood to lungs. • O₂ binds to hemoglobin. 44. Brain part for unconscious breathing: Medulla oblongata. 45. Obstructive vs. restrictive disorders + example: • Obstructive: Narrowed airways (asthma). • Restrictive: Reduced lung expansion (fibrosis). 46. Know spirometry volumes (not numbers): • Tidal volume, • Inspiratory/Expiratory reserve volume, • Residual volume, • Vital capacity, • Total lung capacity, • Inspiratory capacity, • Functional residual capacity. 47. Define eupnea, dyspnea, tachypnea, apnea, Kussmaul respiration: • Eupnea: Normal breathing. • Dyspnea: Labored breathing. • Tachypnea: Rapid, shallow breathing. • Apnea: No breathing. • Kussmaul: Deep, rapid (from acidosis Endocrine System 1. What are hormones and what is their function in the body? Hormones are chemical messengers transported in the bloodstream that stimulate physiological responses in target cells or organs. 2. Types of hormones based on chemical composition and how they enter target cells: • Steroid hormones: Lipid-soluble, diffuse through cell membrane (e.g., cortisol). • Protein/Peptide hormones: Water-soluble, bind to surface receptors (e.g., insulin). • Biogenic/Monoamines: Derived from amino acids (e.g., T3/T4), may need carriers or membrane receptors. 3. Know all 6 hormones secreted by the anterior pituitary gland and their functions: • TSH: Stimulates thyroid to release T3 and T4. • ACTH: Stimulates adrenal cortex to release cortisol. • GH: Stimulates tissue growth and protein synthesis. • PRL: Stimulates milk production. • FSH: Stimulates egg maturation/sperm production. • LH: Triggers ovulation and testosterone production. 4. What is thymosin? Which gland secretes it? What is its function? Thymosin is secreted by the thymus and helps in the development and maturation of T-cells. 5. Know thyroid gland hormones, the cells that secrete them, and their functions: • T3 & T4 (follicular cells): Increase metabolism and regulate appetite. • Calcitonin (C cells): Lowers blood calcium levels. 6. Know the hormones secreted by the adrenal gland and their specific functions: • Cortex: • Aldosterone: Retains Na⁺, excretes K⁺, raises blood pressure. • Cortisol: Increases glucose, metabolism of fat/protein. • Androgens: Precursor to sex hormones. • Medulla: • Epinephrine/Norepinephrine: Increase heart rate, blood flow, and alertness. 7. Function of glucagon and insulin in maintaining homeostasis: • Insulin (beta cells): Lowers blood glucose. • Glucagon (alpha cells): Raises blood glucose. • Antagonistic: They have opposing effects to balance blood sugar levels. 8. Which cells are involved in spermatogenesis? Where does sperm production occur? • Sertoli (Sustentacular) cells support spermatogenesis. • Leydig (Interstitial) cells produce testosterone. • Occurs in the seminiferous tubules of the testes. 9. Know the hormones secreted by the testes and their functions: • Testosterone: Stimulates male development and sperm production. • Inhibin: Inhibits FSH to regulate sperm production. 10. What causes diabetes insipidus? How is it different from diabetes mellitus? • Diabetes insipidus: ADH deficiency → excessive urination. • Diabetes mellitus: Insulin issues → high blood glucose. 11. Know the 3 “P’s” of diabetes: • Polyuria: Excessive urination. • Polydipsia: Excessive thirst. • Polyphagia: Excessive hunger. 12. How are oxytocin and prolactin different? • Oxytocin: Stimulates uterine contractions and milk letdown. • Prolactin: Stimulates milk production. 13. Name the ovarian hormones and their functions: • Estrogen/Progesterone: Regulate cycle, pregnancy, and secondary sex characteristics. • Inhibin: Inhibits FSH secretion. ⸻ Muscle Physiology 14. Know 3 muscle types, their locations, and function: • Skeletal: Attached to bones; movement; voluntary. • Cardiac: Heart; pumps blood; involuntary. • Smooth: Organs/vessels; propels substances; involuntary. 15. Know the layers surrounding muscle: • Epimysium: Surrounds entire muscle. • Perimysium: Surrounds fascicle (bundle). • Endomysium: Surrounds individual fiber. 16. What is a fascicle? A bundle of muscle fibers. 17. What is a sarcomere? Name its regions: Smallest contractile unit (Z-disc to Z-disc). • Z-band, A-band (dark), I-band (light), H-zone. 18. What are actin and myosin? • Actin: Thin filament. • Myosin: Thick filament that pulls actin during contraction. 19. What is troponin and tropomyosin? • Tropomyosin blocks binding sites on actin. • Troponin binds Ca²⁺ to move tropomyosin and expose sites. 20. What is a motor unit? A motor neuron and all muscle fibers it controls. 21. Role of T-Tubule, SR, Terminal Cisternae: • T-Tubule: Conducts AP into cell. • SR: Stores calcium. • Terminal cisternae: Release calcium. 22. Which neurotransmitter is released at the neuromuscular junction? Acetylcholine (ACh). 23. What role does Ca²⁺ play in muscle physiology? Binds troponin, moves tropomyosin, exposes actin sites. 24. What happens to Ca²⁺ after action potential ends? Reabsorbed into SR by Ca²⁺ ATPase pump. 25. What is the function of ATP in muscle physiology? Powers myosin movement, detachment, and Ca²⁺ reuptake. 26. What is sliding filament theory? Myosin pulls actin filaments → sarcomere shortens → contraction. 27. What are DHP and Ryanodine receptors and their roles? • DHP: Voltage sensor in T-tubule. • Ryanodine: Releases Ca²⁺ from SR. 28. What is the function of AChE? Breaks down ACh to stop stimulation and contraction. 29. Difference between isotonic and isometric contractions: • Isotonic: Muscle changes length (shortens/lengthens). • Isometric: Muscle length stays same; tension builds. ⸻ Respiratory Physiology 30. Difference between conductive and respiratory divisions: • Conductive: Air passageways (nose to bronchioles). • Respiratory: Gas exchange (alveoli). 31. Type I & II alveolar cells and functions: • Type I: Gas exchange. • Type II: Secretes surfactant, repairs alveoli. 32. Dust cells and their functions: Alveolar macrophages that clean up particles/debris. 33. Muscles in relaxed vs. forced respiration: • Relaxed inhale: Diaphragm, external intercostals. • Forced inhale: Accessory neck muscles. • Forced exhale: Internal intercostals, abdominals. 34. What happens to pressure and volume when inhaling/exhaling? • Inhale: Volume ↑, pressure ↓. • Exhale: Volume ↓, pressure ↑. 35. Difference between systemic and pulmonary exchange: • Systemic: Gas exchange at tissues. • Pulmonary: Gas exchange in lungs. 36. What cells are involved in carrying gases? Red blood cells (RBCs). 37. Which enzyme converts CO₂ + H₂O → H₂CO₃? Carbonic anhydrase. 38. What does carbonic acid break into? H⁺ + HCO₃⁻ (bicarbonate ion). 39. What happens in hypoxia (low oxygen)? • ↓O₂, ↑CO₂, ↓pH (acidosis). 40. What happens in hypercapnia (high CO₂)? • ↑CO₂, ↓O₂, ↓pH (acidosis). 41. Receptors for blood pH and their locations: • Central (CSF pH): Medulla oblongata. • Peripheral (O₂, CO₂, pH): Carotid & aortic bodies. 42. CO₂ loading & O₂ unloading at tissues: • CO₂ enters blood → forms HCO₃⁻. • O₂ released to tissues. 43. CO₂ unloading & O₂ loading at alveoli: • CO₂ released from blood to lungs. • O₂ binds to hemoglobin. 44. Brain part for unconscious breathing: Medulla oblongata. 45. Obstructive vs. restrictive disorders + example: • Obstructive: Narrowed airways (asthma). • Restrictive: Reduced lung expansion (fibrosis). 46. Know spirometry volumes (not numbers): • Tidal volume, • Inspiratory/Expiratory reserve volume, • Residual volume, • Vital capacity, • Total lung capacity, • Inspiratory capacity, • Functional residual capacity. 47. Define eupnea, dyspnea, tachypnea, apnea, Kussmaul respiration: • Eupnea: Normal breathing. • Dyspnea: Labored breathing. • Tachypnea: Rapid, shallow breathing. • Apnea: No breathing. • Kussmaul: Deep, rapid (from acidosis based on chemical composition and how they enter target cells: • Steroid hormones: Lipid-soluble, diffuse through cell membrane (e.g., cortisol). • Protein/Peptide hormones: Water-soluble, bind to surface receptors (e.g., insulin). • Biogenic/Monoamines: Derived from amino acids (e.g., T3/T4), may need carriers or membrane receptors. 3. Know all 6 hormones secreted by the anterior pituitary gland and their functions: • TSH: Stimulates thyroid to release T3 and T4. • ACTH: Stimulates adrenal cortex to release cortisol. • GH: Stimulates tissue growth and protein synthesis. • PRL: Stimulates milk production. • FSH: Stimulates egg maturation/sperm production. • LH: Triggers ovulation and testosterone production. 4. What is thymosin? Which gland secretes it? What is its function? Thymosin is secreted by the thymus and helps in the development and maturation of T-cells. 5. Know thyroid gland hormones, the cells that secrete them, and their functions: • T3 & T4 (follicular cells): Increase metabolism and regulate appetite. • Calcitonin (C cells): Lowers blood calcium levels. 6. Know the hormones secreted by the adrenal gland and their specific functions: • Cortex: • Aldosterone: Retains Na⁺, excretes K⁺, raises blood pressure. • Cortisol: Increases glucose, metabolism of fat/protein. • Androgens: Precursor to sex hormones. • Medulla: • Epinephrine/Norepinephrine: Increase heart rate, blood flow, and alertness. 7. Function of glucagon and insulin in maintaining homeostasis: • Insulin (beta cells): Lowers blood glucose. • Glucagon (alpha cells): Raises blood glucose. • Antagonistic: They have opposing effects to balance blood sugar levels. 8. Which cells are involved in spermatogenesis? Where does sperm production occur? • Sertoli (Sustentacular) cells support spermatogenesis. • Leydig (Interstitial) cells produce testosterone. • Occurs in the seminiferous tubules of the testes. 9. Know the hormones secreted by the testes and their functions: • Testosterone: Stimulates male development and sperm production. • Inhibin: Inhibits FSH to regulate sperm production. 10. What causes diabetes insipidus? How is it different from diabetes mellitus? • Diabetes insipidus: ADH deficiency → excessive urination. • Diabetes mellitus: Insulin issues → high blood glucose. 11. Know the 3 “P’s” of diabetes: • Polyuria: Excessive urination. • Polydipsia: Excessive thirst. • Polyphagia: Excessive hunger. 12. How are oxytocin and prolactin different? • Oxytocin: Stimulates uterine contractions and milk letdown. • Prolactin: Stimulates milk production. 13. Name the ovarian hormones and their functions: • Estrogen/Progesterone: Regulate cycle, pregnancy, and secondary sex characteristics. • Inhibin: Inhibits FSH secretion. ⸻ Muscle Physiology 14. Know 3 muscle types, their locations, and function: • Skeletal: Attached to bones; movement; voluntary. • Cardiac: Heart; pumps blood; involuntary. • Smooth: Organs/vessels; propels substances; involuntary. 15. Know the layers surrounding muscle: • Epimysium: Surrounds entire muscle. • Perimysium: Surrounds fascicle (bundle). • Endomysium: Surrounds individual fiber. 16. What is a fascicle? A bundle of muscle fibers. 17. What is a sarcomere? Name its regions: Smallest contractile unit (Z-disc to Z-disc). • Z-band, A-band (dark), I-band (light), H-zone. 18. What are actin and myosin? • Actin: Thin filament. • Myosin: Thick filament that pulls actin during contraction. 19. What is troponin and tropomyosin? • Tropomyosin blocks binding sites on actin. • Troponin binds Ca²⁺ to move tropomyosin and expose sites. 20. What is a motor unit? A motor neuron and all muscle fibers it controls. 21. Role of T-Tubule, SR, Terminal Cisternae: • T-Tubule: Conducts AP into cell. • SR: Stores calcium. • Terminal cisternae: Release calcium. 22. Which neurotransmitter is released at the neuromuscular junction? Acetylcholine (ACh). 23. What role does Ca²⁺ play in muscle physiology? Binds troponin, moves tropomyosin, exposes actin sites. 24. What happens to Ca²⁺ after action potential ends? Reabsorbed into SR by Ca²⁺ ATPase pump. 25. What is the function of ATP in muscle physiology? Powers myosin movement, detachment, and Ca²⁺ reuptake. 26. What is sliding filament theory? Myosin pulls actin filaments → sarcomere shortens → contraction. 27. What are DHP and Ryanodine receptors and their roles? • DHP: Voltage sensor in T-tubule. • Ryanodine: Releases Ca²⁺ from SR. 28. What is the function of AChE? Breaks down ACh to stop stimulation and contraction. 29. Difference between isotonic and isometric contractions: • Isotonic: Muscle changes length (shortens/lengthens). • Isometric: Muscle length stays same; tension builds. ⸻ Respiratory Physiology 30. Difference between conductive and respiratory divisions: • Conductive: Air passageways (nose to bronchioles). • Respiratory: Gas exchange (alveoli). 31. Type I & II alveolar cells and functions: • Type I: Gas exchange. • Type II: Secretes surfactant, repairs alveoli. 32. Dust cells and their functions: Alveolar macrophages that clean up particles/debris. 33. Muscles in relaxed vs. forced respiration: • Relaxed inhale: Diaphragm, external intercostals. • Forced inhale: Accessory neck muscles. • Forced exhale: Internal intercostals, abdominals. 34. What happens to pressure and volume when inhaling/exhaling? • Inhale: Volume ↑, pressure ↓. • Exhale: Volume ↓, pressure ↑. 35. Difference between systemic and pulmonary exchange: • Systemic: Gas exchange at tissues. • Pulmonary: Gas exchange in lungs. 36. What cells are involved in carrying gases? Red blood cells (RBCs). 37. Which enzyme converts CO₂ + H₂O → H₂CO₃? Carbonic anhydrase. 38. What does carbonic acid break into? H⁺ + HCO₃⁻ (bicarbonate ion). 39. What happens in hypoxia (low oxygen)? • ↓O₂, ↑CO₂, ↓pH (acidosis). 40. What happens in hypercapnia (high CO₂)? • ↑CO₂, ↓O₂, ↓pH (acidosis). 41. Receptors for blood pH and their locations: • Central (CSF pH): Medulla oblongata. • Peripheral (O₂, CO₂, pH): Carotid & aortic bodies. 42. CO₂ loading & O₂ unloading at tissues: • CO₂ enters blood → forms HCO₃⁻. • O₂ released to tissues. 43. CO₂ unloading & O₂ loading at alveoli: • CO₂ released from blood to lungs. • O₂ binds to hemoglobin. 44. Brain part for unconscious breathing: Medulla oblongata. 45. Obstructive vs. restrictive disorders + example: • Obstructive: Narrowed airways (asthma). • Restrictive: Reduced lung expansion (fibrosis). 46. Know spirometry volumes (not numbers): • Tidal volume, • Inspiratory/Expiratory reserve volume, • Residual volume, • Vital capacity, • Total lung capacity, • Inspiratory capacity, • Functional residual capacity. 47. Define eupnea, dyspnea, tachypnea, apnea, Kussmaul respiration: • Eupnea: Normal breathing. • Dyspnea: Labored breathing. • Tachypnea: Rapid, shallow breathing. • Apnea: No breathing
Updated 232d ago
flashcards Flashcards (11)
0.00
studied byStudied by 0 people