Results for "Chlorophyll"

Flashcards

endomembrane system Semi-autonomous organelles Protein sorting to organelles Systems biology of cells Cell Biology & Cell Theory Cell biology: The study of individual cells and their interactions. Cell Theory (Schleiden & Schwann, with contributions from Virchow): All living organisms are composed of one or more cells. Cells are the smallest units of life. New cells arise only from pre-existing cells through division (e.g., binary fission). Origins of Life: Four Overlapping Stages Stage 1: Formation of Organic Molecules Primitive Earth conditions favored spontaneous organic molecule formation. Hypotheses on the origin of organic molecules: Reducing Atmosphere Hypothesis: Earth's early atmosphere (rich in water vapor) facilitated molecule formation. Stanley Miller’s experiment simulated early conditions, producing amino acids and sugars. Extraterrestrial Hypothesis: Organic carbon (amino acids, nucleic acid bases) may have come from meteorites. Debate exists over survival after intense heating. Deep-Sea Vent Hypothesis: Molecules formed in the temperature gradient between hot vent water & cold ocean water. Supported by experimental evidence. Alkaline hydrothermal vents may have created pH gradients that allowed organic molecule formation. Stage 2: Formation of Polymers Early belief: Prebiotic synthesis of polymers was unlikely in aqueous solutions (water competes with polymerization). Experimental evidence: Clay surfaces facilitated the formation of nucleic acid polymers and polysaccharides. Stage 3: Formation of Boundaries Protobionts: Aggregates of prebiotically produced molecules enclosed by membranes. Characteristics of a protobiont: Boundary separating the internal & external environments. Polymers with information (e.g., genetic material, metabolic instructions). Catalytic functions (enzymatic activities). Self-replication. Liposomes: Vesicles surrounded by lipid bilayers. Can enclose RNA and divide. Stage 4: RNA World Hypothesis RNA was likely the first macromolecule in protobionts due to its ability to: Store information. Self-replicate. Catalyze reactions (ribozymes). Chemical Selection & Evolution: RNA mutations allowed faster replication & self-sufficient nucleotide synthesis. Eventually, RNA world was replaced by the DNA-RNA-protein world due to: DNA providing more stable information storage. Proteins offering greater catalytic efficiency and specialized functions. Microscopy Microscopy Parameters Resolution: Ability to distinguish two adjacent objects. Contrast: Difference between structures (enhanced by special dyes). Magnification: Ratio of image size to actual size. Types of Microscopes Light Microscope: Uses light; resolution = 0.2 micrometers. Electron Microscope: Uses electron beams; resolution = 2 nanometers (100x better than light microscopes). Light Microscopy Subtypes Bright Field: Standard; light passes directly through. Phase Contrast: Amplifies differences in light phase shifts. Differential Interference Contrast (DIC): Enhances contrast for internal structures. Electron Microscopy Subtypes Transmission Electron Microscopy (TEM): Thin slices stained with heavy metals. Some electrons scatter while others pass through to create an image. Scanning Electron Microscopy (SEM): Heavy metal-coated sample. Electron beam scans the surface, producing 3D images. Cell Structure & Function Determined by matter, energy, organization, and information. Genome: The complete set of genetic material. Prokaryotic vs. Eukaryotic Cells Feature Prokaryotic Cells Eukaryotic Cells Nucleus ❌ Absent ✅ Present Membrane-bound organelles ❌ None ✅ Yes Size Small (1-10 µm) Large (10-100 µm) Examples Bacteria, Archaea Plants, Animals, Fungi, Protists Prokaryotic Cell Structure Plasma Membrane: Lipid bilayer barrier. Cytoplasm: Internal fluid. Nucleoid Region: DNA storage (no nucleus). Ribosomes: Protein synthesis. Cell Wall: (Some) Provides structure & protection. Glycocalyx: Protection & hydration. Flagella: Movement. Pili: Attachment. Eukaryotic Cell Structure Nucleus: Contains DNA & controls cell functions. Organelles: Rough ER: Protein synthesis & sorting. Smooth ER: Lipid synthesis, detoxification. Golgi Apparatus: Protein modification & sorting. Mitochondria: ATP production (Powerhouse of the Cell™). Lysosomes: Digestive enzymes for breakdown & recycling. Peroxisomes: Breakdown of harmful substances. Cytoskeleton: Provides structure (microtubules, actin filaments, intermediate filaments). Plasma Membrane: Regulates transport & signaling. Endomembrane System Includes: Nucleus, ER, Golgi apparatus, lysosomes, vacuoles, and plasma membrane. Nuclear Envelope: Double membrane structure. Nuclear pores allow molecule transport. Golgi Apparatus: Modifies & sorts proteins/lipids. Packages proteins into vesicles for secretion (exocytosis). Lysosomes: Contain acid hydrolases for macromolecule breakdown. Perform autophagy (organelle recycling). Semi-Autonomous Organelles Mitochondria Function: ATP production (cellular respiration). Structure: Outer & inner membrane (inner folds = cristae for increased surface area). Mitochondrial matrix houses metabolic enzymes. Chloroplasts (Plants & Algae) Function: Photosynthesis (light energy → chemical energy). Structure: Outer & inner membrane. Thylakoid membrane (site of photosynthesis). Contains chlorophyll. Endosymbiosis Theory Mitochondria & chloroplasts evolved from free-living bacteria that were engulfed by an ancestral eukaryotic cell. Protein Sorting & Cell Organization Co-translational sorting: Proteins destined for ER, Golgi, lysosomes, vacuoles, or secretion. Post-translational sorting: Proteins sent to nucleus, mitochondria, chloroplasts, peroxisomes. Systems Biology Studies how cellular components interact to form a functional system
flashcards Flashcard (4)
studied byStudied by 0 people
13 days ago
0.0(0)
flashcards Flashcard (22)
studied byStudied by 0 people
37 days ago
0.0(0)
flashcards Flashcard (23)
studied byStudied by 1 person
58 days ago
0.0(0)
flashcards Flashcard (12)
studied byStudied by 2 people
98 days ago
0.0(0)
flashcards Flashcard (48)
studied byStudied by 0 people
110 days ago
0.0(0)
Here are the answers to your biology questions: 1. Definitions: * Metabolism: The sum total of all chemical reactions that occur within a living organism. * Catabolism: The breakdown of complex molecules into simpler ones, releasing energy. * Anabolism: The synthesis of complex molecules from simpler ones, requiring energy input. * Endergonic Reaction: A reaction that requires an input of energy to proceed. * Exergonic Reaction: A reaction that releases energy. 2. Role of Enzymes in Metabolism: Enzymes are biological catalysts that speed up chemical reactions by lowering the activation energy. They bind to specific substrates, forming an enzyme-substrate complex, and catalyze the reaction. This allows metabolic processes to occur at rates compatible with life. 3. Enzyme Activity: * Activation Energy: The minimum amount of energy required for a reaction to occur. * Catalyst: A substance that speeds up a chemical reaction without being consumed in the process. * Active Site: The specific region on an enzyme where the substrate binds. * Denaturation: The loss of an enzyme's shape and function, often due to extreme temperature or pH. * Substrate: The molecule upon which an enzyme acts. * Enzyme-Substrate Complex: A temporary complex formed when an enzyme binds to its substrate. * Suffix -ase: Commonly used to denote enzymes, such as sucrase, protease, and lipase. 4. Oxidation-Reduction Reactions in Cellular Respiration: In cellular respiration, oxidation-reduction reactions involve the transfer of electrons and hydrogen ions. Oxidation is the loss of electrons (and often hydrogen atoms), while reduction is the gain of electrons (and often hydrogen atoms). Energy is released during these reactions and is used to produce ATP. 5. Balanced Equation for Cellular Respiration: C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O + energy (ATP) 6. Structure of a Mitochondrion: * Outer Membrane: Encloses the mitochondrion. * Inner Membrane: Folded into cristae, increasing surface area for ATP production. * Intermembrane Space: The space between the outer and inner membranes. * Matrix: The fluid-filled space inside the inner membrane, containing enzymes for the citric acid cycle. 7. Glycolysis: Glycolysis is the breakdown of glucose into pyruvate. It occurs in the cytoplasm and produces 2 ATP, 2 NADH, and 2 pyruvate molecules. 8. Citric Acid Cycle: The citric acid cycle, also known as the Krebs cycle, occurs in the mitochondrial matrix. It completely oxidizes pyruvate, producing 2 ATP, 6 NADH, and 2 FADH₂ molecules per glucose molecule. 9. Electron Transport Chain and Oxidative Phosphorylation: The electron transport chain is a series of protein complexes embedded in the inner mitochondrial membrane. Electrons from NADH and FADH₂ are transferred through the chain, releasing energy that is used to pump protons into the intermembrane space. The resulting proton gradient drives ATP synthesis through ATP synthase. 10. ATP and NADH Production: * Glycolysis: 2 ATP, 2 NADH * Citric Acid Cycle: 2 ATP, 6 NADH, 2 FADH₂ * Electron Transport Chain: ~32 ATP (from NADH and FADH₂) 11. Structure and Function of a Dicot Leaf: Dicot leaves are typically broad and flat, with a network of veins. They have a waxy cuticle to prevent water loss, stomata for gas exchange, and mesophyll cells containing chloroplasts for photosynthesis. 12. Structure of a Chloroplast: * Thylakoid: A flattened, disc-shaped sac. * Thylakoid Membrane: The membrane surrounding the thylakoid. * Thylakoid Space: The interior of the thylakoid. * Stroma: The fluid-filled space outside the thylakoids. * Grana: Stacks of thylakoids. 13. Site of Light-Dependent and Light-Independent Reactions: * Light-Dependent Reactions: Thylakoid membrane * Light-Independent Reactions (Calvin Cycle): Stroma 14. Balanced Equation for Photosynthesis: 6CO₂ + 6H₂O + light energy → C₆H₁₂O₆ + 6O₂ * Carbon (C) from CO₂ is incorporated into glucose. * Hydrogen (H) from water (H₂O) is incorporated into glucose. * Oxygen (O) from water is released as O₂. 15. Dual Nature of Light: Light exhibits both wave-like and particle-like properties. As a wave, it has a wavelength and frequency. As a particle, it consists of photons, discrete packets of energy. 16. Light Reactions: Light energy is absorbed by pigments in photosystems I and II, exciting electrons. These electrons are transferred through a series of electron carriers, generating ATP and NADPH. Water is split, releasing oxygen as a byproduct. 17. Calvin Cycle: The Calvin cycle uses ATP and NADPH from the light reactions to fix CO₂ from the atmosphere. CO₂ is incorporated into RuBP, forming 3-PGA. 3-PGA is reduced to G3P, which can be used to synthesize glucose or regenerate RuBP. 18. Role of Photosynthetic Pigments: Photosynthetic pigments, such as chlorophyll a, chlorophyll b, and carotenoids, absorb light energy and transfer it to the reaction center of photosystems. 19. Role of Photosystems: Photosystems I and II are protein complexes containing pigments and electron carriers. They absorb light energy and use it to excite electrons, initiating the electron transport chain. 20. Phases of the Calvin Cycle: * Carbon Fixation: CO₂ is fixed to RuBP, forming 3-PGA. * Reduction: 3-PGA is reduced to G3P using ATP and NADPH. * Regeneration of RuBP: G3P is used to regenerate RuBP, allowing the cycle to continue. 21. ATP, NADPH, and CO₂ Requirements: * To produce 1 G3P molecule: 9 ATP, 6 NADPH, and 3 CO₂ * To produce 1 glucose molecule: 18 ATP, 12 NADPH, and 6 CO₂ I
flashcards Flashcard (10)
studied byStudied by 5 people
113 days ago
0.0(0)
ENE-1.D = Describe the properties of enzymes. The structure of enzymes includes the active site that specifically interacts with substrate molecules For an enzyme-mediated chemical reaction to occur = the shape & charge of the substrate must be compatible with the active site of the enzyme ENE-1.E = Explain how enzymes affect the rate of biological reactions The structure and function of enzymes contribute to the regulation of biological processes Enzymes are biological catalysts that facilitate chemical reactions (speed up) in cells by lowering the activation energy ENE-1.F = Explain how changes to the structure of an enzyme may affect its function Change to the molecular structure of a component in an enzymatic system may result in a change of the function or efficiency of the system Denaturation of an enzyme occurs when the protein structure is disrupted → eliminating the ability to catalyze reactions Environmental temperatures & pH outside the optimal range for a given enzyme will cause changes to its structure → altering the efficiency with which it catalyzes reactions In some cases, enzyme denaturation is reversible → allowing the enzyme to regain activity ENE-1.G = Explain how the cellular environment affects enzyme activity Environmental pH can alter the efficiency of enzyme activity = including through disruption of hydrogen bonds that provide enzyme structure The relative concentrations of substrates & products determine how efficiently an enzymatic reaction proceeds Higher environmental temperatures increase the speed of movement of molecules in a solution → increasing the frequency of collisions between enzymes & substrates → therefore increasing the rate of reaction Competitive inhibitor molecules can bind reversibly or irreversibly to the active site of the enzyme Noncompetitive inhibitors can bind allosteric sites = changing the activity of the enzyme ENE-1.H = Describe the role of energy in living organisms All living systems require constant input of energy Life requires a highly ordered system & does not violate the second law of thermodynamics Energy input must exceed energy loss to maintain order & to power cellular processes Cellular processes that release energy may be coupled with cellular processes that require energy Loss of order or energy flow results in death Energy-related pathways in biological systems are sequential to allow for a more controlled & efficient transfer of energy A product of a reaction in a metabolic pathway is generally the reactant for the subsequent step in the pathway ENE-1.I = Describe the photosynthetic processes that allow organisms to capture & store energy Organisms capture & store energy for use in biological processes Photosynthesis captures energy from the sun & produces sugars Photosynthesis first evolved in prokaryotic organisms Scientific evidence supports the claim that prokaryotic (cyanobacterial) photosynthesis was responsible for the production of an oxygenated atmosphere Prokaryotic photosynthetic pathways were the foundation of eukaryotic photosynthesis The light-dependent reactions of photosynthesis in eukaryotes = involve a series of coordinated reaction pathways that capture energy present in light to yield ATP & NADPH (power the production of organic molecules) ENE-1.J = Explain how cells capture energy from light & transfer it to biological molecules for storage & use During photosynthesis = chlorophylls absorb energy from light = boosting electrons to a higher energy level in photosystems I & II Photosystems I & II are embedded in the internal membranes of chloroplasts & are connected by the transfer of higher energy electrons through an electron transport chain (ETC) When electrons are transferred between molecules in a sequence of reactions as they pass through the ETC = an electrochemical gradient of protons (hydrogen ions) is established across the internal membrane The formation of the proton gradient is linked to the synthesis of ATP from ADP & inorganic phosphate via ATP synthase The energy captured in the light reactions & transferred to ATP + NADPH = powers the production of carbohydrates from carbon dioxide in the Calvin cycle (which occurs in the stroma of the chloroplast) ENE-1.K = Describe the processes that allow organisms to use energy stored in biological macromolecules Fermentation & cellular respiration = use energy from biological macromolecules to produce ATP Respiration & fermentation = characteristic of all forms of life Cellular respiration in eukaryotes = involves a series of coordinated enzyme-catalyzed reactions that capture energy from biological macromolecules The electron transport chain = transfers energy from electrons in a series of coupled reactions that establish an electrochemical gradient across membranes Electron transport chain reactions = occur in chloroplasts / mitochondria / prokaryotic plasma membranes In cellular respiration = electrons delivered by NADH & FADH2 = passed to a series of electron acceptors (as they move toward the terminal electron acceptor = oxygen) In photosynthesis = the terminal electron acceptor is NADP+ Aerobic prokaryotes = use oxygen as a terminal electron acceptor anaerobic prokaryotes = use other molecules The transfer of electrons = accompanied by the formation of a proton gradient across the inner mitochondrial membrane / the internal membrane of chloroplasts (with the membrane(s) separating a region of high proton concentration from a region of low proton concentration In prokaryotes = the passage of electrons is accompanied by the movement of protons across the plasma membrane. The flow of protons back through membrane-bound ATP synthase by chemiosmosis drives the formation of ATP from ADP & inorganic phosphate known as oxidative phosphorylation in cellular respiration photophosphorylation in photosynthesis In cellular respiration = decoupling oxidative phosphorylation from electron transport generates heat This heat can be used by endothermic organisms to regulate body temperature ENE-1.L = Explain how cells obtain energy from biological macromolecules in order to power cellular functions Glycolysis = a biochemical pathway that releases energy in glucose to form ATP from ADP & inorganic phosphate / NADH from NAD+ /pyruvate Pyruvate = transported from the cytosol to the mitochondrion = where further oxidation occurs In the Krebs cycle = carbon dioxide is released from organic intermediates = ATP is synthesized from ADP + inorganic phosphate & electrons are transferred to the coenzymes NADH + FADH2 Electrons extracted in glycolysis & Krebs cycle reactions = transferred by NADH & FADH2 to the electron transport chain in the inner mitochondrial membranE When electrons are transferred between molecules in a sequence of reactions as they pass through the ETC = an electrochemical gradient of protons (hydrogen ions) across the inner mitochondrial membrane is established Fermentation allows glycolysis to proceed in the absence of oxygen & produces organic molecules (including alcohol & lactic acid = as waste products) The conversion of ATP to ADP = releases energy = which is used to power many metabolic processes SYI-3.A = Explain the connection between variation in the number & types of molecules within cells to the ability of the organism to survive and/or reproduce in different environments. Variation at the molecular level = provides organisms with the ability to respond to a variety of environmental stimuli Variation in the number & types of molecules within cells provides organisms a greater ability to survive and/or reproduce in different environments Kk
flashcards Flashcard (10)
studied byStudied by 0 people
114 days ago
0.0(0)
1. Molecular Forms and Their Functions in Photosynthesis Photosynthesis involves various molecular structures, each contributing to different stages of the process. The key molecular components involved in photosynthesis include: Chlorophyll: A pigment responsible for absorbing light energy, primarily in the blue and red wavelengths, and reflecting green light. Water (H₂O): Used in the light reactions, where it is split to provide electrons and protons (hydrogen ions). Carbon dioxide (CO₂): The source of carbon for the synthesis of glucose, incorporated in the Calvin cycle. ATP (Adenosine Triphosphate): The energy currency produced in the light reactions and used in the Calvin cycle. NADPH (Nicotinamide adenine dinucleotide phosphate): An electron carrier produced in the light reactions, used in the Calvin cycle for the reduction of CO₂. These molecules work in tandem to capture light energy and convert it into chemical energy, which is stored in the bonds of glucose. 2. Roles of Molecular Structures in Photosynthesis The key molecular structures in photosynthesis—chlorophyll, ATP, NADPH, and enzymes—are crucial for energy capture, conversion, and storage in plants. Chlorophyll absorbs light energy and drives the conversion of water into oxygen and electrons during the light reactions. ATP and NADPH are produced in these reactions and are then used in the Calvin cycle to synthesize sugars from carbon dioxide. 3. What is Photosynthesis? Why is it Important? Definition: Photosynthesis is the process by which plants, algae, and some bacteria convert light energy, carbon dioxide, and water into glucose (a form of sugar) and oxygen, using chlorophyll as the primary pigment. Importance: Photosynthesis is fundamental for life on Earth because it: Provides the oxygen necessary for cellular respiration in most organisms. Serves as the foundation of the food chain, producing organic compounds (like glucose) that form the base of energy for almost all living things. Helps regulate atmospheric CO₂ levels, thereby contributing to climate balance. 4. Theoretical Origins of the Chloroplast Chloroplasts are believed to have evolved from cyanobacteria (blue-green algae) through a process called endosymbiosis. This theory suggests that an ancient eukaryotic cell engulfed a photosynthetic prokaryote (cyanobacterium), which then became a permanent part of the host cell. Over time, the engulfed cyanobacterium evolved into the modern chloroplast, retaining its own DNA and two membranes, which are characteristic of bacteria. 5. Where Does Photosynthesis Take Place? In What Type of Cells? Location: Photosynthesis primarily takes place in the chloroplasts of plant cells. Cell Type: Photosynthetic cells are typically found in mesophyll cells in the leaves of plants. These cells contain a high concentration of chloroplasts, which are essential for capturing light energy. 6. Structures of the Chloroplast Stroma: The fluid-filled interior of the chloroplast, which contains enzymes involved in the Calvin cycle (dark reactions). Granum: Stacks of thylakoids, which are the sites of the light reactions. Thylakoid: Membrane-bound structures within the chloroplast that contain chlorophyll and other pigments necessary for light absorption. Thylakoid Space/Lumen: The interior space within each thylakoid where protons (H⁺) accumulate during the light reactions. Inner and Outer Membranes: The double membrane structure that surrounds the chloroplast, with the outer membrane being more permeable than the inner membrane. 7. What is Chlorophyll? Where is it Found in the Chloroplast? Chlorophyll: Chlorophyll is the green pigment in plants that absorbs light energy necessary for photosynthesis. There are two main types: chlorophyll a (primary pigment) and chlorophyll b (which assists chlorophyll a by capturing additional light wavelengths). Location in the Chloroplast: Chlorophyll is embedded in the thylakoid membranes of the chloroplasts. The thylakoids are where light absorption and energy conversion occur. 8. Chemical Reaction of Photosynthesis The general chemical equation for photosynthesis is: 6CO2+6H2O+light energy→C6H12O6+6O26CO_2 + 6H_2O + \text{light energy} \rightarrow C_6H_{12}O_6 + 6O_26CO2​+6H2​O+light energy→C6​H12​O6​+6O2​ Inputs: Carbon dioxide (CO₂): From the air. Water (H₂O): From the soil. Light energy: Captured by chlorophyll from sunlight. Outputs: Glucose (C₆H₁₂O₆): A sugar that stores chemical energy. Oxygen (O₂): A byproduct, released into the atmosphere. 9. Light Reactions of Photosynthesis Location: The light reactions take place in the thylakoid membranes. Inputs: Light energy (photons) Water (H₂O) Outputs: ATP (energy carrier) NADPH (electron carrier) Oxygen (O₂) as a byproduct In the light reactions, light energy is absorbed by chlorophyll, which excites electrons. These electrons are passed through the electron transport chain (ETC), leading to the production of ATP and NADPH. Water is split to replace the excited electrons, producing oxygen as a byproduct. 10. Calvin Cycle (Dark Reactions) Location: The Calvin cycle occurs in the stroma of the chloroplast. Inputs: CO₂ (from the atmosphere) ATP (from the light reactions) NADPH (from the light reactions) Outputs: Glucose (C₆H₁₂O₆) or other sugars that can be used for energy or stored as starch. In the Calvin cycle, carbon dioxide is fixed into an organic molecule through a series of reactions involving the enzyme RuBisCO. ATP and NADPH are used to reduce this organic molecule into sugars. 11. The Original Source of Electrons in Photosynthesis The original source of electrons in photosynthesis is water (H₂O). During the light reactions, water molecules are split by the enzyme photosystem II, releasing electrons, protons, and oxygen. The electrons are passed through the electron transport chain to ultimately reduce NADP⁺ to NADPH. 12. Difference Between Light Reactions and Calvin Cycle Light Reactions: Energy Source: Light energy from the sun. Major Outputs: ATP, NADPH, and O₂. Location: Thylakoid membranes. Calvin Cycle (Dark Reactions): Energy Source: ATP and NADPH produced during the light reactions. Major Output: Glucose (or other carbohydrates). Location: Stroma. The Calvin cycle is often called the "dark reactions" because it does not require light directly; instead, it uses the ATP and NADPH generated in the light reactions to power the fixation of carbon and the synthesis of sugars. 13. Carbon Fixation in Photosynthesis Carbon fixation refers to the process by which carbon dioxide (CO₂) from the atmosphere is incorporated into an organic molecule. In photosynthesis, this occurs during the Calvin cycle, where CO₂ is attached to a 5-carbon molecule called ribulose bisphosphate (RuBP), catalyzed by the enzyme RuBisCO. This process creates a 6-carbon intermediate that is quickly split into two molecules of 3-phosphoglycerate (3-PGA), which are then converted into sugars through a series of reactions. Summary Photosynthesis is essential for life, providing oxygen and forming the basis of the food chain. It occurs in the chloroplasts within plant cells, primarily in the mesophyll cells of leaves. Light reactions capture solar energy and convert it into ATP and NADPH, while releasing O₂. The Calvin cycle uses ATP and NADPH to fix CO₂ and synthesize glucose. Chlorophyll, water, ATP, and NADPH play key roles in harnessing and storing energy during photosynthesis. 1. Chloroplast and Chlorophyll – Differentiate Chloroplast: Definition: Organelles in plant and algal cells where photosynthesis occurs. They contain the necessary machinery for converting light energy into chemical energy (glucose). Structure: Chloroplasts have an outer membrane, an inner membrane, a stroma (fluid-filled space), and thylakoids (membrane-bound structures where light reactions take place). Function: Sites for both the light-dependent reactions (in thylakoid membranes) and the Calvin cycle (in the stroma). Chlorophyll: Definition: A green pigment found in the thylakoid membranes of chloroplasts that absorbs light for photosynthesis. Function: Absorbs light, primarily in the red (~680 nm) and blue (~450 nm) regions of the spectrum, and reflects green light (~500-550 nm), which is why plants appear green. 2. Photon and Wavelength – Define Photon: Definition: A particle of light or electromagnetic radiation. Photons carry energy and are absorbed by chlorophyll during photosynthesis. The energy of a photon is inversely proportional to its wavelength: shorter wavelengths carry more energy. Wavelength: Definition: The distance between successive crests of a wave, typically measured in nanometers (nm) for light. Different wavelengths correspond to different colors of light in the visible spectrum. 3. Wavelengths of Certain Colors of Light ~400 nm: Violet ~500 nm: Green (around this wavelength, light is least absorbed by chlorophyll, so it is reflected, contributing to the green color of leaves). ~550 nm: Yellow-Green ~600 nm: Orange ~700 nm: Red (longer wavelengths like red are absorbed by chlorophyll but used less efficiently for photosynthesis compared to blue light). 4. The 3 Different Pigments in Photosynthesis There are three main types of pigments involved in photosynthesis: Chlorophyll a: Characterization: The primary pigment involved in photosynthesis. It absorbs light mostly in the red and blue wavelengths (~430-450 nm and ~640-680 nm). Function: Directly involved in the light reactions, where it absorbs photons and starts the process of electron transport. Chlorophyll b: Characterization: An accessory pigment that absorbs light in the blue and red-orange regions (~460-500 nm and ~640-660 nm). Function: Helps chlorophyll a by expanding the absorption spectrum and capturing more light energy. Carotenoids (e.g., Beta-carotene): Characterization: Accessory pigments that absorb light in the blue and blue-green wavelengths (~450-480 nm) and appear yellow, orange, or red. Function: Protects chlorophyll by absorbing excess light energy (photoprotection) and transferring energy to chlorophyll. 5. What Wavelengths and Colors are Absorbed and Used in Photosynthesis? Absorbed: Chlorophyll absorbs primarily in the blue (around 430-450 nm) and red (around 640-680 nm) regions of the light spectrum. Why Green?: Chlorophyll reflects and transmits green light (~500-570 nm), which is why leaves appear green to us. The green light is not absorbed efficiently by chlorophyll and is thus reflected, giving leaves their characteristic color. 6. Photosystem, Light-harvesting Complex, Reaction Center, Primary Electron Acceptor – Relate and Explain Photosystem: Definition: A protein-pigment complex in the thylakoid membrane that absorbs light energy and uses it to initiate the process of photosynthesis. Light-harvesting Complex (LHC): Definition: A group of pigments (such as chlorophyll a, chlorophyll b, and carotenoids) that surround the reaction center in the photosystem. They absorb light and transfer energy to the reaction center. Function: Captures light energy and funnels it to the reaction center. Reaction Center: Definition: The part of the photosystem where the energy from light is converted into chemical energy. It contains a pair of chlorophyll a molecules that absorb energy and release excited electrons. Primary Electron Acceptor: Definition: A molecule that accepts the excited electrons from the reaction center, starting the electron transport chain in the light reactions. It is the first step in converting light energy into chemical energy. These components work together in the light reactions: Light energy is absorbed by the light-harvesting complex. This energy is transferred to the reaction center. The reaction center chlorophyll molecules become excited, and an electron is transferred to the primary electron acceptor. The electron is then passed through the electron transport chain, where it eventually helps generate ATP and NADPH. 7. Photosystem II and Photosystem I – Compare and Contrast Photosystem II (PSII): Function: Splits water molecules (photolysis) to release oxygen, protons (H⁺), and electrons. The electrons from water are passed through the electron transport chain to Photosystem I. Key Feature: It is the first photosystem in the light reactions and operates at a wavelength of around 680 nm. Photosystem I (PSI): Function: Absorbs light energy and re-excites electrons, which are used to reduce NADP⁺ to NADPH. Key Feature: Operates at a wavelength of around 700 nm, slightly higher than PSII. Similarities: Both are involved in the light-dependent reactions and contain reaction centers with chlorophyll a. Differences: PSII begins the process by splitting water and producing oxygen. PSI primarily produces NADPH from the excited electrons it receives from PSII. 8. Linear Electron Flow – Process Description Electron Sourcing: The process begins when light excites chlorophyll molecules in Photosystem II. This causes water to split, releasing electrons, protons (H⁺), and O₂. The electrons are passed through the electron transport chain (ETC) to Photosystem I. Energy-Rich Molecules: As electrons travel through the ETC, they provide energy to pump protons into the thylakoid lumen, creating a proton gradient. This gradient is used by ATP synthase to generate ATP. Meanwhile, the electrons in PSI are re-excited by light and used to reduce NADP⁺ to NADPH. Outcome: The process generates both ATP and NADPH, which are used in the Calvin cycle for the synthesis of sugars. 9. Linear vs. Cyclical Electron Flow Linear Electron Flow: Process: Electrons flow from Photosystem II to Photosystem I, ultimately producing both ATP and NADPH. Generates: ATP and NADPH. Cyclical Electron Flow: Process: Electrons from PSI are cycled back through the electron transport chain, without reducing NADP⁺. Instead, they return to PSI to continue the flow of electrons. Generates: More ATP, but no NADPH or oxygen. Difference: Cyclical flow is used when the cell needs more ATP than NADPH, such as in some parts of the Calvin cycle. 10. Cellular Respiration vs. Photosynthesis Similarities: Both involve energy conversion processes. Both produce energy carriers: ATP in both processes, and NADH in respiration and NADPH in photosynthesis. Both processes involve electron transport chains. Differences: Photosynthesis converts light energy into chemical energy (glucose), occurring in chloroplasts. Cellular respiration breaks down glucose to release energy (ATP), occurring in mitochondria. Photosynthesis requires light, whereas cellular respiration does not. The products of photosynthesis (glucose and oxygen) are used as inputs in cellular respiration (glucose and oxygen), while the products of cellular respiration (CO₂ and water) are inputs for photosynthesis. 11. The Calvin Cycle – Major Inputs, Processes, and Outputs Inputs: CO₂ from the atmosphere (fixed into an organic molecule). ATP and NADPH from the light reactions. Major Process of Energy Usage: Carbon Fixation: CO₂ is attached to RuBP (ribulose bisphosphate) by the enzyme RuBisCO. Reduction: ATP and NADPH are used to convert the fixed carbon into a 3-carbon sugar (G3P). Regeneration: Some G3P molecules are used to regenerate RuBP, enabling the cycle to continue. Major Outputs: Glucose or other carbohydrates, which store chemical energy for the plant. 12. Importance of the Molecule RuBisCO (Ribulose Bisphosphate Carboxylase/Oxygenase) Definition: RuBisCO is the enzyme that catalyzes the carbon fixation step in the Calvin cycle, attaching CO₂ to RuBP. Importance: It is the most abundant enzyme on Earth and is crucial for producing the organic molecules necessary for plant growth and, by extension, all life on Earth. Without RuBisCO, plants would not be able to synthesize glucose from CO₂.
flashcards Flashcard (5)
studied byStudied by 0 people
116 days ago
0.0(0)
flashcards Flashcard (18)
studied byStudied by 0 people
134 days ago
0.0(0)
flashcards Flashcard (38)
studied byStudied by 0 people
318 days ago
0.0(0)
flashcards Flashcard (16)
studied byStudied by 0 people
318 days ago
0.0(0)
flashcards Flashcard (29)
studied byStudied by 11 people
341 days ago
0.0(0)
flashcards Flashcard (4)
studied byStudied by 0 people
348 days ago
0.0(0)
flashcards Flashcard (27)
studied byStudied by 9 people
456 days ago
0.0(0)
flashcards Flashcard (16)
studied byStudied by 0 people
464 days ago
0.0(0)
flashcards Flashcard (62)
studied byStudied by 0 people
474 days ago
0.0(0)
flashcards Flashcard (39)
studied byStudied by 0 people
492 days ago
0.0(0)
flashcards Flashcard (12)
studied byStudied by 3 people
779 days ago
5.0(1)
flashcards Flashcard (24)
studied byStudied by 4 people
798 days ago
0.0(0)

Notes

note Note
studied byStudied by 1 person
4 seconds ago
0.0(0)
note Note
studied byStudied by 12 people
1 minute ago
0.0(0)
note Note
studied byStudied by 0 people
35 minutes ago
0.0(0)
note Note
studied byStudied by 0 people
35 minutes ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
3 hours ago
0.0(0)
note Note
studied byStudied by 0 people
4 hours ago
0.0(0)
note Note
studied byStudied by 0 people
4 hours ago
0.0(0)
note Note
studied byStudied by 0 people
7 hours ago
0.0(0)
note Note
studied byStudied by 0 people
9 hours ago
0.0(0)
note Note
studied byStudied by 0 people
11 hours ago
0.0(0)
note Note
studied byStudied by 0 people
12 hours ago
0.0(0)
note Note
studied byStudied by 0 people
12 hours ago
0.0(0)

Users