Results for "AMMONIA"

Filters

Flashcards

System Interactions in Animals Tools Finish System Interactions in Animals The human body is made of many different organ systems. Each system performs unique functions for the body, but the systems also interact with each other to perform more complex functions. Major Organ Systems Body Systems In humans, cells, tissues, and organs group together to form organ systems. These systems each perform different functions for the human body. The major organ systems and their functions in humans include: The Nervous System — The nervous systems consists of two parts. The central nervous system consists of the brain and spinal cord, while the peripheral nervous system consists of nerves that connect the central nervous system to other parts of the body. The brain plays an important role in interpreting the information picked up by the sensory system. It helps in producing a precise response to the stimuli. It also controls bodily functions such as movements, thoughts, speech, and memory. The brain also controls many processes related to homeostasis in the body. The spinal cord connects to the brain through the brainstem. From the brainstem, the spinal cord extends to all the major nerves in the body. The spinal cord is the origin of spinal nerves that branch out to various body parts. These nerves help in receiving and transmitting signals from various body parts. The spinal cord helps in reflex actions of the body The smallest unit of the nervous system is the nerve cell, or neuron. Neurons communicate with each other and with other cells by producing and releasing electrochemical signals known as nerve impulses. Neurons consist of the cell body, the dendrites, and the axon. The cell body consists of a nucleus and cytoplasm. Dendrites are specialized branch-like structures that help in conducting impulses to and from the various body parts. Axons are long, slender extensions of the neuron. Each neuron possesses just a single axon. Its function is to carry the impulses away from the cell body to other neurons. The Circulatory System — The circulatory (or cardiovascular) system is composed of the heart, arteries, veins, and capillaries. The circulatory system is responsible for transporting blood to and from the lungs so that gas exchange can take place. As the circulatory system pumps blood throughout the body, dissolved nutrients and wastes are also delivered to their destinations. The heart is a muscular organ roughly the size of an adult human's closed fist. It is present behind the breastbone, slightly to the left. It consists of four chambers: right atrium, left atrium, right ventricle, and left ventricle. The heart receives deoxygenated blood from the body and pumps this blood to the lugs, where it is oxygenated. The oxygen-rich blood reenters the heart and is then pumped back through the body. The circulatory system is responsible for transporting blood to and from the lungs so that gas exchange can take place. As the circulatory system pumps blood throughout the body, dissolved nutrients and wastes are also delivered to their destinations. Blood circulation takes place through blood vessels. Blood vessels are tubular structures that form a network within the body and transport blood to each tissue. There are three major types of blood vessels: veins, arteries, and capillaries. Veins carry deoxygenated blood from the body to the heart, except for pulmonary veins, which carry oxygenated blood from the lungs to the heart. Arteries carry oxygenated blood from the heart to different organs, except for the pulmonary artery, which carries deoxygenated blood from the heart to the lungs. The arteries branch out to form capillaries. These capillaries are thin-walled vessels through which nutrients and wastes are exchanged with cells. The Respiratory System — The main structures of the respiratory system are the trachea (windpipe), the lungs, and the diaphragm. When the diaphragm contracts, it creates a vacuum in the lungs that causes them to fill with air. During this inhalation, oxygen diffuses into the circulatory system while carbon dioxide diffuses out into the air that will be exhaled. The trachea branches out into two primary bronchi. Each bronchus is further divided into numerous secondary bronchi. These secondary bronchi further branch into tertiary bronchi. Finally, each tertiary bronchus branches into numerous bronchioles. Each bronchiole terminates into a tiny, sac-like structure known as an alveolus. The walls of each alveolus are thin and contain numerous blood capillaries. The process of gaseous exchange occurs in these alveoli. The diaphragm is a dome-shaped muscle situated at the lower end of the rib cage. It separates the abdominal cavity from the chest cavity. During inhalation, the diaphragm contracts, and the chest cavity enlarges, creating a vacuum that allows air to be drawn in. This causes the alveoli in the lungs to expand with air. During this process, oxygen diffuses into the circulatory system while carbon dioxide diffuses out into the air that will be exhaled. On the other hand, expansion of the diaphragm causes exhalation of air containing carbon dioxide. The Digestive System — The digestive system consists of the mouth, stomach, small intestine, large intestine, and anus. It is responsible for taking in food, digesting it to extract energy and nutrients that cells can use to function, and expelling the remaining waste material. Mechanical and chemical digestion takes place in the mouth and stomach, while absorption of nutrients and water takes place in the intestines. The digestive system begins at the mouth, where food is taken in, and ends at the anus, where waste is expelled. The food taken into the mouth breaks into pieces by the grinding action of the teeth. Carbohydrate digestion starts in the mouth with the breakdown of carbohydrates into simple sugars with the help of salivary enzymes. The chewed food, known as a bolus, enters the stomach through the esophagus. The bolus mixes with acids and enzymes released by the stomach. Protein digestion starts in the stomach as proteins are broken down into peptides. This partially digested food is known as chyme. Chyme enters the small intestine and mixes with bile, a substance secreted by the liver, along with enzymes secreted by the pancreas. The digestion of fats starts in the small intestine as bile and pancreatic enzymes break down fats into fatty acids. The surface of the small intestine consists of hair-like projections known as villi. These villi help in absorbing nutrients from the digested food. The digested food enters the large intestine, or colon, where water and salts are reabsorbed. Any undigested food is expelled out of the body as waste. The Skeletal System — The skeletal system is made up of over 200 bones. It protects the body's internal organs, provides support for the body and gives it shape, and works with the muscular system to move the body. In addition, bones can store calcium and produce red and white blood cells. The Muscular System — The muscular system includes more than 650 tough, elastic pieces of tissue. The primary function of any muscle tissue is movement. This includes the movement of blood through the arteries, the movement of food through the digestive tract, and the movement of arms and legs through space. Skeletal muscles relax and contract to move the bones of the skeletal system. The Excretory System — The excretory system removes excess water, dangerous substances, and wastes from the body. The excretory system also plays an important role in maintaining body equilibrium, or homeostasis. The human excretory system includes the lungs, sweat glands in the skin, and the urinary system (such as the kidneys and the bladder). The body uses oxygen for metabolic processes. Oxygen metabolism results in the production of carbon dioxide, which is a waste matter. The lungs expel carbon dioxide through the mouth and nose. The liver converts toxic metabolic wastes, such as ammonia, into less harmful susbtances. Ammonia is converted to urea, which is then excreted in the urine. The skin also expels urea and small amounts of ammonia through sweat. The skin is embedded with sweat glands. These glands secrete sweat, a solution of water, salt, and wastes. The sweat rises to the skin's surface, where it evaporates. The skin maintains homeostasis by producing sweat in hot environments. Sweat production cools and prevents excessive heating of the body. Each kidney contains about a million tiny structures called nephrons, which filter the blood and collect waste products, such as urea, salts, and excess water that go on to become urine. The Endocrine System — The endocrine system is involved with the control of body processes such as fluid balance, growth, and sexual development. The endocrine system controls these processes through hormones, which are produced by endocrine glands. Some endocrine glands include the pituitary gland, thyroid gland, parathyroid gland, adrenal glands, thymus gland, ovaries in females, and testes in males. The Immune System — The immune system is a network of cells, tissues, and organs that defends the body against foreign invaders. The immune system uses antibodies and specialized cells, such as T-cells, to defend the body from microorganisms that cause disease. The Reproductive System — The reproductive system includes structures, such as the uterus and fallopian tubes in females and the penis and testes in males, that allow humans to produce new offspring. The reproductive system also controls certain hormones in the human body that regulate the development of sexual characteristics and determine when the body is able to reproduce. The Integumentary System — The integumentary system is made up of a person's skin, hair, and nails. The skin acts as a barrier to the outside world by keeping moisture in the body and foreign substances out of the body. Nerves in the skin act as an interface with the outside world, helping to regulate important aspects of homeostasis, such as body temperature. Interacting Organ Systems The organ systems work together to perform complex bodily functions. The functions of regulation, nutrient absorption, defense, and reproduction are only possible because of the interaction of multiple body systems. Regulation All living organisms must maintain homeostasis, a stable internal environment. Organisms maintain homeostasis by monitoring internal conditions and making adjustments to the body systems as necessary. For example, as body temperature increases, skin receptors and receptors in a region of the brain called the hypothalamus sense the change. The change triggers the nervous system to send signals to the integumentary and circulatory systems. These signals cause the skin to sweat and blood vessels close to the surface of the skin to dilate, actions which dispel heat to decrease body temperature. Both the nervous system and the endocrine system are typically involved in the maintenance of homeostasis. The nervous system receives and processes stimuli, and then it sends signals to body structures to coordinate a response. The endocrine system helps regulate the response through the release of hormones, which travel through the circulatory system to their site of action. For example, the endocrine system regulates the level of sugar in the blood by the release of the hormones insulin, which stimulates uptake of glucose by cells, and glucagon, which stimulates the release of glucose by the liver. The nervous and endocrine systems interact with the excretory system in the process of osmoregulation, the homeostatic regulation of water and fluid balance in the body. The excretory system expels excess water, salts, and waste products. The excretion of excessive amounts of water can be harmful to the body because it reduces blood pressure. If the nervous system detects a decrease in blood pressure, it stimulates the endocrine system to release antidiuretic hormone. This hormone decreases the amount of water released by the kidneys to ensure appropriate blood pressure. Appropriate levels of carbon dioxide in the blood are also maintained by homeostatic mechanisms that involve several organ systems. Excess carbon dioxide, a byproduct of cellular respiration, can be harmful to an organism. As blood circulates throughout the body, it picks up carbon dioxide waste from cells and transports it to the lungs, where it is exhaled while fresh oxygen is inhaled. If the concentration of carbon dioxide in the blood increases above a certain threshold, the nervous system directs the lungs to increase their respiration rate to remove the excess carbon dioxide, which ensures that the levels of carbon dioxide in the blood are maintained at appropriate levels. In this way, the circulatory, respiratory, and nervous systems work together to limit the level of carbon dioxide in the blood. Nutrient Absorption To absorb nutrients from food, the nervous, digestive, muscular, excretory, and circulatory systems all interact. The nervous system controls the intake of food and regulates the muscular action of chewing, which mechanically breaks down food. As food travels through the stomach and intestines, the digestive system structures release enzymes to stimulate its chemical breakdown. At the same time, the muscular action, called peristalsis, of the muscles in the wall of the stomach help churn the food and push it through the digestive tract. In the intestines, nutrients from food travel across the surfaces of the villi. The nutrients are then picked up by the blood, and the circulatory system transports the nutrients throughout the cells of the body. The endocrine system releases hormones, such as insulin, that control the rate at which certain body cells use nutrients. Any excess minerals, such as calcium, in the blood are deposited in and stored by the skeletal system. Waste products produced by the use of nutrients, as well as the leftover solid waste from the digestion of food, exit the body through the excretory system. Throughout the process of nutrient absorption, the nervous system controls the muscles involved in digestion, circulation, and excretion. Defense Several body systems interact to defend the body from external threats. The body's first line of defense is the integumentary system, which provide a physical barrier that prevents pathogens from entering the body. The skin of the integumentary system also contains receptors for pain, temperature, and pressure. If an unpleasant stimulus is encountered, these receptors send signals to the central nervous system. In response, the central nervous system sends commands to the muscles to move the body part away from the stimulus. In this way, the integumentary, nervous, and muscular systems interact to prevent damage to the body. In the event of a break in the skin, the nervous, immune, lymphatic, and circulatory systems work together to repair the wound and protect the body from pathogens. When the skin is broken, specialized blood cells called platelets form a clot to stop the bleeding. These platelets also release chemicals that travel through the circulatory system and recruit cells, like immune system cells, to repair the wound. These immune cells, or white blood cells, are transported by the circulatory and lymphatic systems to the site of the wound, where they identify and destroy potentially pathogenic cells to prevent an infection. Some lymphocytes, white blood cells produced by the lymphatic system, also produce antibodies to neutralize specific pathogens. All of the white blood cells involved in the body's response were originally produced in the bone marrow of the skeletal system. If an infection does occur
Updated 11d ago
flashcards Flashcards (10)
Chapter 4 The Effects of Chemical Reactions. • Introduction to Chemical Reactions. - Chemical reaction: a process in which one or more substances change into one or more new substances. - Clues that a chemical reaction has occurred : 1. Color change Example: two colorless aqueous solutions mix together to produce a bright yellow precipitate. 2. A precipitate (solid) is formed when mixing two solutions together. 3. Gas formation. Bubbles of gas (effervescence) are produced when mixing substances together (solid – liquid or aqueous – aqueous ….) 4. Heat is produced. - Chemical reactions are described by using word equations or chemical equations. - Chemical equations need to be balanced when written because it shows the correct proportions (amounts) of chemicals in a reaction. - A balanced chemical equation has equal number of atoms of each element in the reactants (left hand side) and the products (right hand side). - Exercise: Balance the following equations. a) KClO3→KCl + O2 b) Na2O + H2O NaOH c) Cu + AgNO3 Cu(NO3)2 + Ag d) C3H7OH + O2 CO2 + H2O • Synthesis and Decomposition Reactions. Synthesis: Two or more substances (elements and / or compounds) combine to form one larger compound. General pattern: A + B → C Examples: N2 + 3 H2 → 2 NH3 CaO + CO2 → CaCO3 2 P + 3 Cl2 → 2 PCl3 Decomposition: This is opposite to synthesis; that is, one large compound breaks down (decomposes) into 2 or more simpler substances. Example: 2 KClO3 → 2 KCl + 3 O2 General pattern: R → S + T Remark: Usually decomposition happens due to heat or electricity. - Predicting the product of decomposition or synthesis reactions. 2 AlCl3 (s) → 2 Al (s) + 3 Cl2 (g) Zn (s) + S (s) → ZnS (s) 2 Zn (s) + O2 (g) → 2 ZnO(s) - Single Displacement (Replacement) Reactions. Definition: A reaction in which an element displaces (replaces) another element in a compound, producing a new compound and a new element. General pattern: A + BC → AC + B Example: Mg (s) + CuSO4 (aq) → MgSO4 (aq) + Cu (s) Zn (s) + 2 AgNO3 (aq) → Zn(NO3)2 (aq) + 2 Ag (s) Fe (s) + MgCl2 (aq) → no reaction. Remark: The element that displaces the other element in a compound must be more reactive (active) than that element, otherwise no reaction takes place. In the general pattern above, A should be more reactive than B for the reaction to proceed. The following reactivity (activity) series lists the chemical strength (reactivity) of the metals in order from the more reactive to the less reactive. KPlease stop calling my amazing zebra in the long Nahungry class. sorry !! Ca Mg Al Zn Fe Sn Pb H Cu Ag Examples of single displacement reactions : 2 Al (s) + 3 CuSO4 (aq) → Al2(SO4)3 (aq) + 3 Cu (s) Sn (s) + Zn(NO3)2 (aq) → no reaction Exercise: Complete and balance the following equations. If there is no reaction occurring write no reaction. a) 2 Al (s) + 6 HCl (aq) → 2 AlCl3 (aq) + 3 H2 (g) b) Cu (s) + H2SO4 (aq) → no reaction c) 2 AlCl3 (aq) + 3 Ca (s) → 3 CaCl2 (aq) + 2 Al (s) d) Mg (s) + 2 HNO3 (aq) → Mg(NO3)2 (aq) + H2(g) - Reactivity of halogens decreases down the group. F2> Cl2> Br2> I2 The reactions taking place for the halogens or their compounds are in solution (aqueous) Examples: Cl2 (aq) + 2 KBr (aq) → 2 KCl (aq) + Br2 (l) Cl2 (aq) + NaF (aq) → no reaction. Exercise: F2 (aq) + 2 LiCl (aq) → 2 LiF (aq) + Cl2 (g) I2 (aq) + NaCl (aq) → no reaction • Double displacement reactions. - Definition: A reaction in which two compounds mix together and an exchange of ions (elements) occurs which results in the formation of 2 new compounds. - General pattern: AB + CD → AD + CB - Solubility: the amount of solute that dissolves in a given amount of solvent at a given temperature. - When we say a substance is soluble, it means it dissolves in water; whereas if it is insoluble it means it doesn’t dissolve in water. - The compound in a reaction that is soluble is in aqueous (aq) phase, whereas the compound which is insoluble is in the solid state (s). - The solid which is formed in a double displacement reaction is called the precipitate and it is insoluble. - Solubility rules (used in double displacement reactions). 1. All alkali metal ions and ammonium ion (NH4+) are soluble. 2. All nitrates (NO3-) are soluble. 3. All sulfates (SO4-2) are solubleexceptwith Ba+2 , Pb+2 , Ca+2 , Sr+2 , Ag+ . 4. All chlorides, bromides and iodides(Cl-, Br-, I-) aresolubleexcept with Ag+ , Pb+2 , Hg+, Cu+ 5. All OH- are insolubleexceptwith rule 1, and Ba+2 and Sr+2 . 6. All oxides (O2-), sulfides (S2-), sulfites (SO32-), carbonates (CO32-), phosphates (PO43-) are insoluble except with rule 1 Remark: If all compounds formed in a double displacement reaction are soluble (aqueous) then no reaction takes place. Exercise: State whether each of the following compounds is soluble or insoluble ? Na2SO4 : Fe(NO3)2: LiOH: ZnSO4: PbBr2: BaSO4: Mg(OH)2: PbO: NH4Cl: Na2S: Cu(OH)2: KF: Exercise: Complete and balance the following chemical equations: - KNO3 (aq) + NaCl (aq) → - LiCl (aq) + AgNO3 (aq) → - Zn (s) + FeSO4 (aq) → - NaOH (aq) + CuCl2 (aq) → - ZnCl2 (aq) + Na3PO4 (aq) → - Pb(NO3)2 (aq) + K2S (aq) → • Net ionic equation: a chemical equation which shows ONLY the ions that are involved in the formation of the precipitate (solid). Examples: Pb+2 (aq) + S-2 (aq) → PbS (s) Ag+ (aq) + Cl- (aq) → AgCl (s) Cu+2 (aq) + 2 OH- (aq) → Cu(OH)2 (s) • Full ionic equation: an equation which shows All the ions in the soluble (aqueous compounds) in both reactants and products. Example: - 2 NaOH (aq) + CuCl2 (aq) → 2 NaCl (aq) + Cu(OH)2 (s) 2 Na+ (aq) + 2 OH- (aq) + Cu+2 (aq) + 2 Cl- (aq) → 2 Na+ (aq) + 2 Cl- (aq) + Cu(OH)2 (s) - 3 ZnCl2 (aq) + 2 Na3PO4 (aq) → Zn3(PO4)2 (s) + 6 NaCl (aq) Full ionicequation: 3 Zn+2(aq) + 6 Cl-(aq) + 6 Na+ (aq) + 2 PO4-3 (aq) → Zn3(PO4)2 (s) + 6 Na+ (aq) + 6 Cl- (aq) Net ionic equation: 3 Zn+2 (aq) + 2 PO4-3 (aq) → Zn3(PO4)2 (s) Exercise: Complete and balance the following equation, then write full ionic and net ionic equations for the reaction. Pb(NO3)2 (aq) + 2 NaI (aq) → Full ionic equation: Net ionic equation: Spectator ions: the ions that are not involved in the formation of the precipitate (solid). Note that the spectator ions appear on both sides of the full ionic equation. For example, in the above reaction, Na+ (sodium ions) and NO3- (nitrate ions) are the spectator ions. Exercise: Complete and balance the following equation, then write the net ionic equation and identify the spectator ions. BaCl2 (aq) + K2SO4 (aq) → Net ionic equation: Ba+2 (aq) + SO4-2 (aq) → Spectator ions: - Combustion reaction is a special type of (synthesis) reaction in which the substance reacts with (burns in) oxygen. Examples: C(s) + O2(g) → CO2(g) • Production of gases (lab scale): 1. CO2 2. SO2 3. H2 4. H2S (hydrogen sulfide) 5. NH3 (ammonia) General pattern of the chemical reactions to produce the above gases: 1. Metal carbonate + acid → CO2 Example: Na2CO3 (aq) + 2 HCl (aq) → 2 NaCl(aq) + CO2(g) + H2O(l) 2. Metal sulfite + acid → SO2 K2SO3 (aq) + 2 HCl (aq) → 2 KCl(aq) + SO2(g) + H2O(l) 3. Metal + acid → H2 Remark: This is a single displacement reaction therefore the metal used in the reaction should be higher in the reactivity series than hydrogen. Zn (s) + 2 HCl (aq) → ZnCl2 (aq) + H2(g) 4. Metal sulfide + acid → H2S Na2S (aq) + 2 HCl (aq) → 2 NaCl (aq) + H2S (g) 5. Ammonium compound + base (alkaline solution) → NH3 NH4Cl (aq) + NaOH (aq) → NaCl (aq) + NH3 (g) + H2O (l) Exercise: Write the net ionic equations for each of the above 5 reactions. Answers 1. 2 H+ (aq) + CO3-2(aq) → CO2(g) + H2O (l) 2. 2 H+ (aq) + SO3-2(aq) → SO2(g) + H2O (l) 3. Zn(s) + 2 H+(aq) → Zn+2(aq) + H2(g) 4. 2H+ (aq) + S-2 (aq) → H2S (g)
Updated 29d ago
flashcards Flashcards (4)
4. Metals and Non-metals Learning Objectives By the end of the lesson, you will be able to: ☑ distinguish between metals and non-metals ☑ describe the physical and chemical properties of metals and non-metals ☑ list the uses of some metals and non-metals MINERALS AND ORES You have learnt that all materials Here is the exact text from the image:are made up of basic substances called elements, and that elements cannot be split into simpler substances by chemical methods. There are 118 known elements. Sodium, zinc, gold, mercury, iron, lead, barium and tin (metals); and hydrogen, oxygen, carbon, sulphur, chlorine, boron, neon and radon (non-metals) are some examples. Only certain unreactive elements are found free in nature. Others occur in combined states as minerals. A mineral is a solid inorganic substance that is found in nature. A mineral deposit that can be mined and from which an element or compound can be obtained profitably is known as an ore. Elements can be broadly classified into two groups—metals and non-metals. Table 4.1 Some common ores Fig. 4.1 Some common ores a. Bauxite (aluminium) b. Malachite (copper) c. Haematite (iron) d. Galena (lead) e. Apatite (phosphorus) f. Quartz (silicon) -- --- METALS All except 20 of the known elements are metals. Most metals are reactive; they combine with other elements in nature, such as oxygen and sulphur, and occur as oxides, sulphides and carbonates. Only a few unreactive metals like gold, silver and platinum are found as free metals in the Earth's crust. Physical Properties of Metals Metals are solids at room temperature, except mercury, which is a liquid at room temperature (Fig. 4.2(a)). They are generally hard and strong, with a few exceptions such as sodium and potassium, which are soft and can be easily cut with a knife (Fig. 4.2(b)). They have a metallic lustre (shine), especially when freshly cut. They have high melting and boiling points, with a few exceptions like sodium, potassium and mercury. They are good conductors of heat and electricity. Silver and copper are the best conductors of electricity, followed by gold and aluminium. Metals are sonorous. They produce a ringing sound when struck. Most metals have high tensile strength. They can take heavy loads without breaking. They are malleable. Metals, with exceptions like sodium and potassium, can be beaten into thin sheets and foils. They are ductile. Metals, with exception like sodium and potassium, can be drawn into wires. Most metals have high density. However, sodium and potassium have low density and float on water. Fig. 4.2 Special metals a. Mercury b. Sodium --- Chemical Properties of Metals Reaction with oxygen Metals react with oxygen under different conditions to form basic oxides. These basic oxides react with water to form bases. Sodium and potassium react vigorously with oxygen at room temperature. 4Na + O_2 \rightarrow 2Na_2O To prevent this oxidation, sodium and potassium are stored under kerosene. Magnesium reacts with oxygen only when ignited. It burns with a dazzling bright flame and forms a white powder of magnesium oxide. 2Mg + O_2 \rightarrow 2MgO Copper and iron react with oxygen only when heated to a very high temperature. 2Cu + O_2 \rightarrow 2CuO --- --- Reaction with water Metals react with water to form hydroxides or oxides, along with hydrogen. Different metals react at different temperatures. Sodium, potassium, and calcium react with cold water to form hydroxides. 2Na + 2H_2O \rightarrow 2NaOH + H_2 Magnesium Reacts with steam or hot water to form magnesium oxide. Mg + H_2O \rightarrow MgO + H_2 Aluminium Forms an oxide too, but this oxide forms a protective covering over the metal and prevents further reactions. 2Al + 3H_2O \rightarrow Al_2O_3 + 3H_2 Zinc Reacts only with steam. Zn + H_2O \rightarrow ZnO + H_2 Iron Reacts with steam when heated strongly. 2Fe + 3H_2O \rightarrow Fe_3O_4 + 3H_2 Copper, gold, silver, and platinum do not react with water at all. --- Activity 4.1 Teacher Demonstration Aim: To study the reaction of metals with water. [Caution: This activity should be demonstrated by the teacher, and students should stand away from the table.] Materials required: Two 200 mL beakers Pieces of sodium and calcium Forceps Knife Litmus papers Water Method: 1. Fill each beaker with 100 mL of water. 2. Using forceps and a knife, cut a small piece of sodium. 3. Dry it on a tissue paper and drop it into one of the beakers. 4. Repeat the same procedure with calcium. 5. Test the water in both the beakers with red and blue litmus papers. Observations and Conclusions: Sodium reacts vigorously and may explode. A gas is also released. The reaction with calcium is quick, though not as vigorous as that with sodium. In both cases, the red litmus paper turns blue, showing that the solutions are bases. --- Reaction with dilute acids Most metals react with dilute acids to form their salts and liberate hydrogen gas. The reaction with reactive metals like sodium, potassium, and calcium is violent. Magnesium, aluminium, zinc, and iron do not react violently. Mg + 2HCl \rightarrow MgCl_2 + H_2 Copper, silver, gold, and platinum do not react with dilute acids. --- Reaction with bases Only some metals such as aluminium and zinc react with strong bases like sodium hydroxide to liberate hydrogen gas. Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2 --- Activity 4.2 Aim: To study the reaction of metals with dilute hydrochloric acid. Materials required: Sandpaper Six test tubes Dilute hydrochloric acid Strips of magnesium, zinc, iron, tin, lead, and copper Method: 1. Clean the metal strips with sandpaper. 2. Add dilute hydrochloric acid to the six test tubes. 3. Insert a strip of metal into each test tube. Observe if any bubbles are formed in the test tubes. If no bubbles are seen, warm them gently in a beaker of hot water. 4. Observe the speed at which gas is generated. This gives an idea of the speed of the reaction. 5. Classify the metals in order of their reactivity with dilute hydrochloric acid. [Caution: Acids are corrosive and should be handled carefully.] --- Activity 4.3 Aim: To study the reaction of metals with bases. Materials required: Small piece of zinc Beaker Sodium hydroxide Method: 1. Prepare warm sodium hydroxide or caustic soda solution. 2. Drop the piece of zinc into it. Observations and Conclusions: You will notice that zinc reacts with sodium hydroxide to liberate hydrogen gas. Observations on Metals with Dilute Acids Metals like sodium, potassium, and calcium react violently with dilute acids to liberate hydrogen gas. Magnesium, aluminium, zinc, and iron also displace hydrogen from dilute acids, but the reaction is not violent. Metals such as copper, silver, gold, and platinum do not displace hydrogen from dilute acids. --- Activity Series of Metals The activity series of metals is the arrangement of metals in decreasing order of reactivity. The series in the book shows reactivity decreasing from top to bottom. Potassium is the most reactive metal while gold is the least reactive. --- Displacement of a Metal by Other Metals A more reactive metal displaces a less reactive metal from its compounds in an aqueous solution. Some examples: Mg + CuSO_4 \rightarrow MgSO_4 + Cu Zn + FeSO_4 \rightarrow ZnSO_4 + Fe Iron can displace copper from copper sulphate solution (as shown in Activity 4.4). The solution turns green, and reddish-brown copper deposits on the iron nail. Copper cannot displace iron from iron sulphate solution, showing that copper is less reactive than iron. Cu + FeSO_4 \rightarrow \text{No reaction} Question: What do you think will happen if you place a silver spoon in copper sulphate solution? --- Activity 4.4 - Displacement Reaction Aim: To study a displacement reaction. Materials Required: Test tube Iron nail Copper sulphate solution Method: 1. Fill the test tube with copper sulphate solution (blue in colour). 2. Place the clean iron nail in the solution. Observations and Conclusions: After about an hour, the solution changes to green, and a reddish-brown deposit is formed on the iron nail. --- Corrosion of Metals Corrosion is the destruction or damage of a material due to chemical reaction. Rusting of iron happens when iron is exposed to moist air, forming a reddish-brown layer of rust. Rust is iron oxide, which eventually flakes off, damaging the object. Definition written on the page: "Slow eating of a metal’s surface due to oxidation is called corrosion of metals." --Observations on Metals with Dilute Acids Metals like sodium, potassium, and calcium react violently with dilute acids to liberate hydrogen gas. Magnesium, aluminium, zinc, and iron also displace hydrogen from dilute acids, but the reaction is not violent. Metals such as copper, silver, gold, and platinum do not displace hydrogen from dilute acids. --- Activity Series of Metals The activity series of metals is the arrangement of metals in decreasing order of reactivity. The series in the book shows reactivity decreasing from top to bottom. Potassium is the most reactive metal while gold is the least reactive. --- Displacement of a Metal by Other Metals A more reactive metal displaces a less reactive metal from its compounds in an aqueous solution. Some examples: Mg + CuSO_4 \rightarrow MgSO_4 + Cu Zn + FeSO_4 \rightarrow ZnSO_4 + Fe Iron can displace copper from copper sulphate solution (as shown in Activity 4.4). The solution turns green, and reddish-brown copper deposits on the iron nail. Copper cannot displace iron from iron sulphate solution, showing that copper is less reactive than iron. Cu + FeSO_4 \rightarrow \text{No reaction} Question: What do you think will happen if you place a silver spoon in copper sulphate solution? --- Activity 4.4 - Displacement Reaction Aim: To study a displacement reaction. Materials Required: Test tube Iron nail Copper sulphate solution Method: 1. Fill the test tube with copper sulphate solution (blue in colour). 2. Place the clean iron nail in the solution. Observations and Conclusions: After about an hour, the solution changes to green, and a reddish-brown deposit is formed on the iron nail. --- Corrosion of Metals Corrosion is the destruction or damage of a material due to chemical reaction. Rusting of iron happens when iron is exposed to moist air, forming a reddish-brown layer of rust. Rust is iron oxide, which eventually flakes off, damaging the object. Definition written on the page: "Slow eating of a metal’s surface due to oxidation is called corrosion of metals." Uses of Metals (Continued) Aluminium Used in high-voltage electric lines. Alloys like duralumin and magnalium are used in aircraft and automobile bodies. Used for making aluminium foil and cooking utensils. Copper Good conductor of electricity → Used in electrical wires, cables, motors, and transformers. Good conductor of heat → Used in the bottoms of stainless steel vessels. Zinc Used to make corrosion-resistant galvanised iron (GI) pipes and sheets. Used as an electrode in dry cells. Other Metals Gold and silver → Used in jewellery. Lead → Used in electrodes of lead storage batteries (used in automobiles and inverters). Chromium → Used for electroplating iron to give a shiny, corrosion-resistant finish. --- Looking Back (True/False Statements) 1. Gold, silver, and platinum are found in the Earth’s crust as free metals. → True 2. Most metals are solids that are soft. → False 3. Metals such as zinc and magnesium react with dilute acids to liberate oxygen. → False 4. A less reactive metal displaces a more reactive metal from its aqueous solution. → False 5. The chemical name of rust is zinc oxide. → False (Rust is Fe₂O₃.xH₂O) 6. Coating zinc objects with iron is called galvanising. → False (Galvanising is coating iron with zinc) Non-Metals Physical Properties of Non-Metals Exist as gases or solids at room temperature (except bromine, which is liquid). Not as hard as metals (except diamond, which is very hard). Low tensile strength and low density. Low melting and boiling points (except graphite). Not sonorous (do not produce a ringing sound). Not malleable or ductile (cannot be beaten into sheets or drawn into wires). Do not have lustre (except iodine and graphite). Bad conductors of heat and electricity (except graphite, and silicon under specific conditions). --Chemical Properties of Non-Metals Reaction with Water Most non-metals do not react with water. Highly reactive non-metals (e.g., phosphorus) catch fire in air, so they are stored in water. Fluorine, chlorine, and bromine react with water to form acids. Reaction with Oxygen Non-metals react with oxygen to form acidic or neutral oxides. Carbon and sulfur react with oxygen to form acidic oxides, which dissolve in water to form acids. Some oxides (e.g., CO, N₂O) are neutral and do not form acids. Examples: Carbon + Oxygen → Carbon Dioxide (CO₂) CO₂ + Water → Carbonic Acid (H₂CO₃) Sulfur + Oxygen → Sulfur Dioxide (SO₂) SO₂ + Water → Sulfurous Acid (H₂SO₃) Reaction with Acids Unlike metals, non-metals do not replace hydrogen in acids. Silicon reacts with hydrofluoric acid (HF). --Uses of Non-Metals Hydrogen Used in the manufacture of ammonia and industrial chemicals. Used in vanaspati (a cooking oil). Oxygen Used in breathing support systems in hospitals. Used with other gases in equipment to weld metals. Sulphur Used in the manufacture of sulphuric acid, sulphur dioxide gas, and other industrial chemicals. Used to make pesticides for agriculture. Used in vulcanising rubber (making it harder) and in gunpowder. Nitrogen Used in the manufacture of ammonia and nitrogenous fertilisers like ammonium nitrate and ammonium sulphate. Used as an inert gas in processed food packaging to prevent rancidity. Silicon Used in making semiconductors for microchips. Silicates (oxides of silicon) are used in making glass. Other Non-Metals Phosphorus: Used in making fertilisers (superphosphates). Chlorine: Used for disinfecting drinking water. Argon: Used in welding stainless steel and filling electric bulbs. Helium: Used in balloons for meteorological observations. Neon: Used in fluorescent lights for advertisement displays
Updated 44d ago
flashcards Flashcards (10)
AMMONIA
Updated 133d ago
flashcards Flashcards (42)
NPN LAB (Ammonia)
Updated 168d ago
flashcards Flashcards (20)
0.00
studied byStudied by 0 people