1/36
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Definition of Derivative
f'(x) = limₕ→0 [f(x+h) – f(x)] / h
Power Rule
d/dx [x^n] = n·x^(n–1)
Product Rule
d/dx [u·v] = u'·v + u·v'
Quotient Rule
d/dx [u/v] = [v·u' – u·v'] / v²
Chain Rule
d/dx f(g(x)) = f'(g(x)) · g'(x)
Derivative of sin x
cos x
Derivative of cos x
–sin x
Derivative of tan x
sec²x
Derivative of ln x
1/x
Derivative of e^x
e^x
Mean Value Theorem
f'(c) = [f(b)–f(a)] / (b–a)
Linear Approximation
L(x) = f(a) + f'(a)(x–a)
Differential
dy ≈ f'(x)·dx
Fundamental Theorem of Calculus Part 1
d/dx ∫ₐˣ f(t) dt = f(x)
Fundamental Theorem of Calculus Part 2
∫ₐᵇ f(x) dx = F(b) – F(a)
Average Value of a Function
(1/(b–a))·∫ₐᵇ f(x) dx
Disk Method Volume
π·∫ₐᵇ [R(x)]² dx
Washer Method Volume
π·∫ₐᵇ ([R(x)]² – [r(x)]²) dx
Shell Method Volume
2π·∫ₐᵇ [radius·height] dx
Arc Length Parametric
∫ₐᵇ √[(dx/dt)² + (dy/dt)²] dt
Arc Length Function y(x)
∫ₐᵇ √[1 + (dy/dx)²] dx
Surface Area of Revolution
2π·∫ₐᵇ y·√[1 + (dy/dx)²] dx
Parametric Derivative
dy/dx = (dy/dt)/(dx/dt)
Second Derivative Parametric
d²y/dx² = [d/dt(dy/dx)] / (dx/dt)
Area in Polar Coordinates
(1/2)·∫ₐᵇ [r(θ)]² dθ
Arc Length Polar
∫ₐᵇ √[r² + (dr/dθ)²] dθ
Exponential Growth Solution
y = Ce^(kt)
Taylor Series
Σ [f⁽ⁿ⁾(a)/n!]*(x–a)^n
Maclaurin Series for e^x
Σ x^n / n!
Maclaurin Series for sin x
Σ (–1)^n · x^(2n+1)/(2n+1)!
Maclaurin Series for cos x
Σ (–1)^n · x^(2n)/(2n)!
Geometric Series Sum
a/(1–r) if |r|<1
Ratio Test
limₙ→∞ |aₙ₊₁ / aₙ|
nth Term Test for Divergence
If limₙ→∞ aₙ ≠ 0, the series diverges
p-Series Test
Σ1/n^p converges if p>1, diverges if p≤1
Integral Test
Convergence determined by ∫₁^∞ f(x) dx
Alternating Series Error Bound
Error ≤ |next term|