1/23
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
1 (Pythagorean Identity)
= sin²θ + cos²θ
1 (Pythagorean Identity)
= sec²θ - tan²θ
1 (Pythagorean Identity)
= csc²θ - cot²θ
sin (2θ) =
2sinθ cosθ
cos (2θ) =
cos²θ - sin²θ
2cos²θ - 1
1 - 2sin²θ
tan (2θ) =
(2tanθ) / (1 - tan²θ)
sin A + sin B =
2 sin[(A+B)/ 2] cos[(A-B)/ 2]
sin A - sin B =
2 cos[(A+B)/ 2] sin [(A-B)/ 2]
cos A + cos B =
2 cos[(A+B)/ 2] cos[(A-B)/ 2]
cos A - cos B =
-2 sin[(A+B)/ 2] sin[(A-B)/ 2]
sin(A+B) =
sinA cosB + cosA sinB
sin (A-B) =
sinA cosB - cosA sinB
cos(A+B) =
cosA cos B - sinA sinB
cos(A-B) =
cosA cos B + sinA sinB
tan(A+B) =
(tanA + tan B) / (1 - tanA tanB)
tan(A-B) =
(tanA - tan B) / (1 + tanA tanB)
sin²θ =
[1 - cos(2θ)] / 2
cos²θ =
[1 + cos(2θ)] / 2
tan²θ =
[1 - cos(2θ)] / [1 + cos(2θ)]
sinA sinB =
½ [cos(A-B) - cos(A+B)]
cosA cosB =
½ [cos(A-B) + cos(A+B)]
sinA cosB =
½ [sin(A+B) + sin(A-B)]
cosA sinB =
½ [(sin(A+B) - sin(A-B)]
the only even trig identity
cos(-θ) = cos(θ)