1/53
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
sum and difference limit rule
limx→c (f(x) +- g(x)) = limx→c f(x) +- limx→c g(x)
product limit rule
limx→c (f(x) * g(x)) = limx→c f(x) * limx→c g(x)
quotient limit rule
limx→c (f(x)/g(x)) = (limx→c f(x))/(limx→c g(x))
constant multiple limit rule
limx→c (k(f(x)) = k * limx→c f(x)
compositions limit rule
limx→c f(g(x)) = f(limx→cg(x))
limx→0 (sinx)/0
1
limx→0 (cosx-1)/x
0
limx→0 x/(sinx)
1
limx→0 (1-cosx)/x
0
limx→0 (sinx)/x
1
limx→+-infinity (sinx)/x
0
limx→+-infinity (cosx)/x
0
horizontal asymptote rules (m = degree of num, n = degree of den)
if m>n, no HA
if m=n, HA at y = (leading coeff of m)/(leading coeff of n)
if m<n, HA at y=0
infinite limit (VAs)
if limx→c- f(x) = +-infinity OR if limx→c+ f(x) = +-infinity, there is a VA at x=c
limits at infinity (HAs)
if limx→infinity f(x) = c OR if limx→-infinity f(x) = c, there is a HA at y=c
definition of continuity
a function f(x) is continuous at x=c if & only if
f(c) exists,
limx→c f(x) exists
f(c) = limx→c f(x) exists
intermediate value theorem
if function f(x) is continuous on a closed interval [a,b], then if k is between f(a) and f(b), then f(c) = k for some c in [a,b]
limit definition of a derivative at point x = instantaneous rate of change = slope of tangent line
f’(x) = limh→0 (f(x+h) - f(x))/h
limit definition of a derivative at point x=a or instantaneous rate of change at x=a
f’(a) = limx→a (f(x) - f(a))/(x-a)
product rule
d/dx (f(x) g(x)) = f(x) * g’(x) + g(x) * f’(x)
quotient rule
d/dx (f(x)/g(x)) = (g(x) * f’(x) - f(x) * g’(x))/(g(x))²
average rate of change over interval [a,b] (slope of secant line)
(f(b) - f(a))/(b-a)
position
s = f(t)
velocity
ds/dt = f’(t) = v(t)
acceleration
d²s/dt² = f’’(t) = v’(t) = a(t)
speed
| v(t) |
d/dx (sinx)
cosx
d/dx (cosx)
-sinx
d/dx (tanx)
sec²x
d/dx (cotx)
-csc²x
d/dx (secx)
secx * tanx
d/dx (cscx)
-cscx * cotx
chain rule
if y=f(u) is a function of u and u=g(x) is a function of x, then d/dx (f(g(x)) = f’(g(x)) * g’(x)
formulas for deriving inverse functions
g’(x) = 1/(f'(g(x))
(f-1)’(a) = 1/(f’(f-1(a))
y=arcsin x iff
sin y = x
y = arccos x iff
cos y = x
y = arctan x iff
tan y = x
y = arccot x iff
cot y = x
y = arcsec x iff
sec y = x
y = arccsc x iff
csc y = x
d/dx (arcsin u) =
u’/sqrt(1-u²)
d/dx (arccos u) =
-u’/sqrt(1-u²)
d/dx (arctan u) =
u’/(1+u²)
d/dx (arccot u) =
-u’/(1+u²)
d/dx arcsec u =
u’(|u| sqrt(u²-1))
d/dx arccsc u =
-u’/(|u| sqrt(u²-1))
d/dx ex
ex
d/dx eu
eu * u’
d/dx ax
ax * ln a
d/dx au
au * ln a * u’
d/dx ln x
1/x
d/dx ln u
1/u * u’ = u’/u
d/dx logax
1/(x * ln a)
d/dx logau
u’/(u * ln a)