1/7
This is what happens when you don't love your kids... DUDUDU
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Taylor Series
\begin{aligned}
&\text{Taylor Series (about }x=a\text{):}\\
&\quad f(x)
= f(a)
+ f'(a)\,(x-a)
+ \frac{f''(a)}{2!}\,(x-a)^{2}
+ \cdots
+ \frac{f^{(n)}(a)}{n!}\,(x-a)^{n}
+ \cdots
\\[8pt]
&\text{Maclaurin Series (special case }a=0\text{):}\\
&\quad f(x)
= f(0)
+ f'(0)\,x
+ \frac{f''(0)}{2!}\,x^{2}
+ \cdots
+ \frac{f^{(n)}(0)}{n!}\,x^{n}
+ \cdots
\\[6pt]
&\text{The }n\text{-th derivative at the center }a
\text{ (or }0\text{) divided by }n!\\
&\quad \text{is the coefficient of }(x-a)^{n}\,\text{which is the value of the derivative}.
\end{aligned}
\frac{1}{1 - x}
\begin{aligned}
&\frac{1}{1 - x}
= \sum_{n=0}^{\infty} x^n
= 1 + x + x^2 + \cdots + x^n + \cdots
\quad(\lvert x\rvert < 1)
\end{aligned}
f(x)=\frac{1}{1+x}
\frac{1}{1+x}
=1 - x + x^2 - x^3 + \cdots
=\sum_{n=0}^{\infty}(-1)^n x^n,
\quad |x|<1.
a_n = (-1)^n x^n,\quad n=0,1,2,\dots
f(x)=\ln(1+x)
\ln(1+x)
= x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots
=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{x^n}{n},
\quad |x|<1.
a_n = (-1)^{n-1}\frac{x^n}{n},\quad n=1,2,3,\dots
f(x)=\arctan x
\arctan x
= x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots
=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{2n+1},
\quad |x|\le1.
a_n = (-1)^n\frac{x^{2n+1}}{2n+1},\quad n=0,1,2,\dots
f(x)=e^x
e^x
=1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots
=\sum_{n=0}^{\infty}\frac{x^n}{n!},
\quad x\in\mathbb{R}.
a_n = \frac{x^n}{n!},\quad n=0,1,2,\dots
f(x)=\sin x
\sin x
= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots
=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!},
\quad x\in\mathbb{R}.
a_n = (-1)^n\frac{x^{2n+1}}{(2n+1)!},\quad n=0,1,2,\dots
f(x)=\cos x
\cos x
=1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots
=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!},
\quad x\in\mathbb{R}.
a_n = (-1)^n\frac{x^{2n}}{(2n)!},\quad n=0,1,2,\dots