1/28
Vocabulary flashcards covering key trigonometric identities and relationships extracted from the lecture notes.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Sine in terms of tangent
sin θ = tan θ / √(1 + tan² θ)
Cosine in terms of tangent
cos θ = 1 / √(1 + tan² θ)
Tangent in terms of sine
tan θ = sin θ / √(1 − sin² θ)
Cotangent in terms of cosine
cot θ = √(1 − cos² θ) / cos θ = sin θ / cos θ
Co-function identity for sine
sin(π/2 − θ) = cos θ
Co-function identity for cosine
cos(π/2 − θ) = sin θ
Co-function identity for tangent
tan(π/2 − θ) = cot θ
Supplementary angle identity for sine
sin(π − θ) = sin θ
Supplementary angle identity for cosine
cos(π − θ) = −cos θ
Supplementary angle identity for tangent
tan(π − θ) = −tan θ
Double-angle formula for sine
sin 2θ = 2 sin θ cos θ
Double-angle formula for cosine
cos 2θ = cos² θ − sin² θ = 1 − 2 sin² θ = 2 cos² θ − 1
Double-angle formula for tangent
tan 2θ = (2 tan θ) / (1 − tan² θ)
Triple-angle formula for sine
sin 3θ = 3 sin θ − 4 sin³ θ
Triple-angle formula for cosine
cos 3θ = 4 cos³ θ − 3 cos θ
Triple-angle formula for tangent
tan 3θ = (3 tan θ − tan³ θ) / (1 − 3 tan² θ)
Difference of sines to sum of cosines
sin A − sin B = 2 cos[(A + B)/2] sin[(A − B)/2]
Product-to-sum for cosine product
cos A · cos B = ½ [cos(A + B) + cos(A − B)]
Product-to-sum for sine–cosine
sin A · cos B = ½ [sin(A + B) + sin(A − B)]
Sum-to-product for sum of sines
sin A + sin B = 2 sin[(A + B)/2] cos[(A − B)/2]
Sum-to-product for difference of sines
sin A − sin B = 2 cos[(A + B)/2] sin[(A − B)/2]
Sum-to-product for sum of cosines
cos A + cos B = 2 cos[(A + B)/2] cos[(A − B)/2]
Sum-to-product for difference of cosines
cos A − cos B = −2 sin[(A + B)/2] sin[(A − B)/2]
Sine addition formula
sin(A + B) = sin A cos B + cos A sin B
Sine subtraction formula
sin(A − B) = sin A cos B − cos A sin B
Cosine addition formula
cos(A + B) = cos A cos B − sin A sin B
Cosine subtraction formula
cos(A − B) = cos A cos B + sin A sin B
Tangent addition formula
tan(A + B) = (tan A + tan B) / (1 − tan A tan B)
Tangent subtraction formula
tan(A − B) = (tan A − tan B) / (1 + tan A tan B)