MC Gd 10 3.4 Practice blooket

0.0(0)
studied byStudied by 3 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/4

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

5 Terms

1
New cards
<p>What type of rigid motion is this?</p><p>a). Reflection</p><p>b). Translation</p><p>c). Rotation</p><p>d). Guide reflection.</p>

What type of rigid motion is this?

a). Reflection

b). Translation

c). Rotation

d). Guide reflection.

d). Reflection (flipping over a line)

2
New cards

2. The coordinates for △ABC are A(-1,2), B(2,0), and C(2,5). Reflect this from

△ABC to △A'B'C' (Rₓ-axis).

a.) The reflection coordinates from △ABC to △A'B'C' is A(-1,-2), B(-2,0), and C(-2,-5).

b.) The reflection coordinates from △ABC to △A'B'C' is A(1,2), B(2,0), and C(2,5).

c.) The reflection coordinates from △ABC to △A'B'C' is A(-1,-2), B(2,0), and C(2,-5).

d.) The reflection coordinates from △ABC to △A'B'C' is A(1,-2), B(-2,0), and C(-2,5)

Looking at your options:

c.) The reflection coordinates from △ABC to △A'B'C' is A(-1,-2), B(2,0), and C(2,-5).

This is the correct answer.

3
New cards

The coordinates for △ABC are A(-5,2), B(10,0), and C(5,5). Reflect this from

△ABC to △A'B'C' (Rₓ-axis).

a.) The coordinates for △ABC are A(-5,-2), B(-10,0), and C(-5,-5). Reflect this from △ABC to △A'B'C' (Rₓ-axis).

b.) The coordinates for △ABC are A(5,2), B(10,0), and C(5,5). Reflect this from △ABC to △A'B'C' (Rₓ-axis).

c.) The coordinates for △ABC are A(-5,-2), B(10,0), and C(5,-5). Reflect this from △ABC to △A'B'C' (Rₓ-axis).

d.) 2. The coordinates for △ABC are A(-5,2), B(-10,0), and C(-5,5). Reflect this from △ABC to △A'B'C' (Rₓ-axis).

Original points:

  • A(-5, 2) → A'(-5, -2)

  • B(10, 0) → B'(10, 0)

  • C(5, 5) → C'(5, -5)

The correct option is:

c.) The coordinates for △ABC are A(-5, -2), B(10, 0), and C(5, -5).

That is a correct answer.

4
New cards

The coordinates for △ABC are A(1,2), B(1,3), and C(1,5). Translate 1 unit up

from △ABC to △A'B'C'.

a. The coordinates from △ABC to △A'B'C' is A(1,5), B(1,2), and C(1,7).

b. The coordinates from △ABC to △A'B'C' is A(1,3), B(1,4), and C(1,5).

c. The coordinates from △ABC to △A'B'C' is A(1,3), B(1,4), and C(1,6).

d. The coordinates from △ABC to △A'B'C' is A(1,5), B(1,7), and C(1,9).

Let’s do this for each point:

  • A(1,2) → A'(1, 2+1) = A'(1,3)

  • B(1,3) → B'(1, 3+1) = B'(1,4)

  • C(1,5) → C'(1, 5+1) = C'(1,6)

So the correct coordinates are A'(1,3), B'(1,4), and C'(1,6).

This matches option c.

5
New cards
<p>How can you translate the black △ to the orange △?</p><p></p><p>a. From black △ to the orange △, translate 2 units left.</p><p>b. From black △ to the orange △,&nbsp;<span style="background-color: transparent; font-size: 1.6rem;">translate 1 unit left.</span></p><p>c. From black △ to the orange △,&nbsp;<span style="background-color: transparent; font-size: 1.6rem;">translate 1 unit right.</span></p><p>d. From black △ to the orange △, translate 2 units right.</p>

How can you translate the black △ to the orange △?

a. From black △ to the orange △, translate 2 units left.

b. From black △ to the orange △, translate 1 unit left.

c. From black △ to the orange △, translate 1 unit right.

d. From black △ to the orange △, translate 2 units right.

From black to orange, it can move 2 units to the left, so it’s -2.

a. From black △ to the orange △, translate 2 units left (-2).

This is the correct answer.

<p>From black to orange, it can move 2 units to the left, so it’s -2.</p><p><strong>a. From black △ to the orange △, translate 2 units left (-2).</strong></p><p>This is the correct answer.</p>