1/4
Geometry / Algebra 2 (△ - Triangle)
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.

What type of rigid motion is this?
a). Reflection
b). Translation
c). Rotation
d). Guide reflection.
d). Reflection (flipping over a line)
2. The coordinates for △ABC are A(-1,2), B(2,0), and C(2,5). Reflect this from
△ABC to △A'B'C' (Rₓ-axis).
a.) The reflection coordinates from △ABC to △A'B'C' is A(-1,-2), B(-2,0), and C(-2,-5).
b.) The reflection coordinates from △ABC to △A'B'C' is A(1,2), B(2,0), and C(2,5).
c.) The reflection coordinates from △ABC to △A'B'C' is A(-1,-2), B(2,0), and C(2,-5).
d.) The reflection coordinates from △ABC to △A'B'C' is A(1,-2), B(-2,0), and C(-2,5)
Looking at your options:
c.) The reflection coordinates from △ABC to △A'B'C' is A(-1,-2), B(2,0), and C(2,-5).
This is the correct answer.
The coordinates for △ABC are A(-5,2), B(10,0), and C(5,5). Reflect this from
△ABC to △A'B'C' (Rₓ-axis).
a.) The coordinates for △ABC are A(-5,-2), B(-10,0), and C(-5,-5). Reflect this from △ABC to △A'B'C' (Rₓ-axis).
b.) The coordinates for △ABC are A(5,2), B(10,0), and C(5,5). Reflect this from △ABC to △A'B'C' (Rₓ-axis).
c.) The coordinates for △ABC are A(-5,-2), B(10,0), and C(5,-5). Reflect this from △ABC to △A'B'C' (Rₓ-axis).
d.) 2. The coordinates for △ABC are A(-5,2), B(-10,0), and C(-5,5). Reflect this from △ABC to △A'B'C' (Rₓ-axis).
Original points:
A(-5, 2) → A'(-5, -2)
B(10, 0) → B'(10, 0)
C(5, 5) → C'(5, -5)
The correct option is:
c.) The coordinates for △ABC are A(-5, -2), B(10, 0), and C(5, -5).
That is a correct answer.
The coordinates for △ABC are A(1,2), B(1,3), and C(1,5). Translate 1 unit up
from △ABC to △A'B'C'.
a. The coordinates from △ABC to △A'B'C' is A(1,5), B(1,2), and C(1,7).
b. The coordinates from △ABC to △A'B'C' is A(1,3), B(1,4), and C(1,5).
c. The coordinates from △ABC to △A'B'C' is A(1,3), B(1,4), and C(1,6).
d. The coordinates from △ABC to △A'B'C' is A(1,5), B(1,7), and C(1,9).
Let’s do this for each point:
A(1,2) → A'(1, 2+1) = A'(1,3)
B(1,3) → B'(1, 3+1) = B'(1,4)
C(1,5) → C'(1, 5+1) = C'(1,6)
So the correct coordinates are A'(1,3), B'(1,4), and C'(1,6).
This matches option c.

How can you translate the black △ to the orange △?
a. From black △ to the orange △, translate 2 units left.
b. From black △ to the orange △, translate 1 unit left.
c. From black △ to the orange △, translate 1 unit right.
d. From black △ to the orange △, translate 2 units right.
From black to orange, it can move 2 units to the left, so it’s -2.
a. From black △ to the orange △, translate 2 units left (-2).
This is the correct answer.
