1/73
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Average velocity
(distance/ time)
displacement kinematics
d= v1t + (1/2)at^2
Final velocity kinematics
v2= v1 + at
Final velocity squared kinematics
v2^2= v1^2 + 2ad
average acceleration
(v2- v1) / (t)
net force
F= ma
weight
W= mg
normal force (Fn)
W*cos(theta)
Kinetic/ Static friction force
(μK or μS)(Fn)
torque
rFsin(theta)
Gravitational force two bodies (F)
(G(m1)(m2)) / d^2
G=6.67×10^-11
Gravitational force single body (g)
(Gm) / r^2
G=6.67×10^-11
escape velocity (vesc)
sqrt(2Gm / r). PLANETS
G=6.67×10^-11
orbital velocity (vorbit)
sqrt(Gm / r). PLANETS
kinetic energy
KE= (1/2) mv^2
potential energy
PE= mgh
Total mechanical energy
Emechanical = KE + PE
work
W= F*dcos(theta)
work
W= change in kinetic energy
power
P= (W/t)
momentum
p= mv
inelastic collisions
m1v1 + m2v2 = mv3
elastic collision
m1v1 (initial) + m2v2 (initial) = m1v1 (final) + m2v2 (final)
index of refraction
n= c/v c= 3.00*10^8 m/s
Snells law
n1sinθ1 = n2sinθ2
apparent depth (submerged)
D-apparent = D-actual (n2 / n1)
n1= object
n2= usually air
critical angle
sin(theta)c = (n2/n1)
thin lens equation
1/ do + 1/di = 1/f
CONVERGING
convex lens, concave mirror
RIO= real, inverted, opposite side
DIVERGING
concave lens, convex mirror
SUV= same side, upright, virtual
magnification
hi/ho = -di/do
power (magnification) in diopters
1/f
f= focal length
image height
ho/hi = do/di
wave velocity
v=fλ
period (wave)
T= 1/f
wave sound intensity
I= (P/A) or (p/ 4pix^2)
velocity wave on string
v= sqrt(T/ μ)
μ=mass of string/ length of string
Coulomb's Law
F= Ke(q1q2) / r^2
Ke= 9×10^9
electric field
E=F/q
units N/C or volts per meter
electric fields (point charge)
E= kq / x^2
electric potential
V= Ex
Electrical potential energy
U= Kq1q2/r
K=9×10^9
voltage
V= IR
I= current
R= resistance
power circuits
P= IV = I^2R = V^2 / R
current
I= q/t
q= charge
resistance of wire
R= pL/ A
A= area of wire
L= length
p= resistivity constant (unitless)
total capacitance (SERIES)
1/C1 + 1/C2 ......
total resistance (SERIES)
R1 + R2 ........
total capacitance (PARALLEL)
C1 + C2 ........
total resistance (PARALLEL)
1/R1 + 1/R2 .....
charge of a capacitor
Q= CV
energy of a capacitor
E= (1/2) CV^2
density
p= m/v
pressure
P= F/A
pressure for surface
P= Po + pgh
Pascal's principle hydraulics
F1/ A1 = F2/ A2
continuity equation
p1A1v1 = p2A2v2
A1v1 = A2v2
buoyant force
Fb= mg = pVg
centripetal velocity
Vc= (2pi*r / T)
centripetal acceleration
ac= v^2 / r
centripetal force
Fc= mv^2 /r
change in internal energy
deltaU= Q + W
BY= negative
ON= positive
pressure volume work
W= -P delta V
BY= negative
ON= positvie
heat energy gained/lost
q=mC(deltaT)
C= specific heat
energy efficiency
percent efficiency= 100((Th - Tc) / (Th))
units: K
ideal gas equation 1
PV= nRT
R= 0.0821 Latm/ molK
ideal gas equation 2
PV= nRT
R= 8.31 J/ mol*K
force spring
F= kx
work spring
W= 1/2 kx^2
potential energy spring
PE= 1/2 kx^2
period spring
T= 2pi sqrt(m/k)
period for pendulum
T= 2pi sqrt (length, gravity)
angular frequency
w= 2pi / T
angular frequency with a spring
w = sqrt (k/m)