1/28
i really fucking hate this.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
sin2A =
2sinAcosA
cos2A =
cos²A - sin²A = 2cos²A - 1 = 1 - sin²A
tan2A =
2tanA/(1-tan²A)
\sec^2x=
1+\tan^2x
\operatorname{cosec}^2x=
1+\cot^2x
\int\tan^2xdx=
\tan x-x+C or use trig identity and\int\sec^2xdx
\int\cot^2xdx=
-\cot x-x+C or using cosec identity
\int\operatorname{cosec}^2xdx=
-\cot x+C
\int_{}^{}\sec xdx=
\ln\left|\sec x+\tan x\right|+C
\int_{}^{}\operatorname{cosec}xdx =
\ln\left|\operatorname{cosec}x-\cot x\right|
\int_{}^{}\sinh xdx=
\cosh x+C
\int_{}^{}\cosh xdx=
\sinh x+C
\int\tanh xdx=
\ln\left(\cosh x\right)+C
\int_{}^{}\coth xdx=
\ln\left|\sinh x\right|+C
\int_{}^{}\operatorname{sech}xdx=
\arctan\left(\sinh x\right)+C
\int\,co\operatorname{sech}xdx
\ln\left|\tanh\left(\frac{x}{2}\right)\right|+C
\int_{}^{}\operatorname{sech}^2xdx
tanhx + C
\int_{}^{}\operatorname{cosech}^2xdx =
-cothx + C
\int_{}^{}\tanh^2xdx
x - tanhx + C
\int_{}^{}\coth^2xdx=
x - cothx + C
\frac{d}{dx}(secx) =
secxtanx
\frac{d}{dx}(cosecx) =
-\operatorname{cosec}x\cot x
\frac{d}{dx}(cotx)
-\operatorname{cosec}^2x
\frac{d}{dx}(sec^2x)
2\sec^2x\tan x
\frac{d}{dx}(cosec^2 x)
-2\operatorname{cosec}^2x\cot x
\frac{d}{dx}(cot^2 x)
-2\cot x\operatorname{cosec}^2x
\frac{d}{dx}(arcsinx)
\frac{1}{\sqrt{1-x^2}}
\frac{d}{dx}(arccosx)
-\frac{1}{\sqrt{1-x^2}}
\frac{d}{dx}(arctanx)
\frac{1}{1+x^2}