1/43
Integrals and Derivative Formulas
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
d/dx[cu]
cu’
d/dx[u±v]
u’ ± v'
d/dx[uv] Product Rule
uv’+vu’
d/dx[u/v] Quotient Rule
(v u' - u v') / v^2
d/dx[c]
0
d/dx[u^n] Power Rule
n u^{n-1} u'
d/dx[x]
1
d/dx[ |u| ]
u/|u| * u’
d/dx[ln u]
u’/u
d/dx[e^u]
e^u * u’
d/dx[log a u]
u’/(u ln a)
d/dx[a^u]
(ln a)a^u u’
d/dx[sin u]
cos u
d/dx[cos u]
-(sin u)
d/dx[tan u]
(sec²u)
d/dx[cot u]
-(csc²u)
d/dx[sec u]
(sec u tan u)
d/dx[csc u]
-(csc u cot u)
d/dx[arcsin u]
u’ / sqrt(1-u²)
d/dx[arccos u]
-u’ / sqrt(1-u²)
d/dx[arctan u]
u’ / (1+u²)
d/dx[arccot u]
-u’ / (1+u²)
d/dx[arcsec] u
u’ / |u| sqrt(u²-1)
d/dx[arccsc u]
-u’ / |u|*sqrt(u²-1)
∫kf(u) du
k*∫f(u) du
∫[f(u) +- g(u)]du
∫f(u) du +- ∫g(u) du
∫du
u + C
∫u^n du
u^n+1 / n+1 +C
∫du/u
ln|u| + C
∫e^u du
e^u + C
∫a^u du
(1/ln(a)) a^u + C
∫sin u du
-cos u + C
∫cos u du
sin u + C
∫tan u du
-ln|cos u| + C
∫cot u du
ln|sin u| + C
∫sec u du
ln|sec u + tan u| + C
∫csc u du
-ln|csc u + cot u| + C
∫sec²u du
tan u + C
∫csc²u du
-cot u + C
∫sec u tan u du
sec u + C
∫csc u cot u du
-csc u + C
∫du/ sqrt(a²-u²)
arcsin u/a + C
∫du / a²+u²
1/a * arctan u/a +C
∫du/ u sqrt(u²-a²)
1/a * arcsec|u/a| + C