1/40
Flashcards covering key concepts from calculus lecture notes, including trigonometric functions, properties of logarithms, limits, derivatives, integrals, theorems, differential equations, growth rates, series, Taylor series, and applications of integration.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
lim (x->0) sin(x)/x = ?
sin(x)/x approaches 1 as x approaches 0
lim (h->0) (cos(h)-1)/h = ?
cos(h)-1 all over h approaches 0 as h approaches 0
lim (h->0) (e^h - 1) / h = ?
(e^h - 1) / h approaches 1 as h approaches 0.
d/dx sin(x) = ?
cos(x)
d/dx cos(x) = ?
-sin(x)
d/dx tan(x) = ?
sec^2(x)
d/dx cot(x) = ?
-csc^2(x)
d/dx sec(x) = ?
sec(x)tan(x)
d/dx csc(x) = ?
-csc(x)cot(x)
d/dx arcsin(x) = ?
1 / sqrt(1 - x^2)
d/dx arccos(x) = ?
-1 / sqrt(1 - x^2)
d/dx arctan(x) = ?
1 / (x^2 + 1)
d/dx arccot(x) = ?
-1 / (x^2 + 1)
d/dx arcsec(x) = ?
1 / (|x| * sqrt(x^2 - 1))
d/dx arccsc(x) = ?
-1 / (|x| * sqrt(x^2 - 1))
d/dx e^x = ?
e^x
d/dx a^x = ?
a^x * ln(a)
d/dx ln(x) = ?
1/x
d/dx log_b(x) = ?
1 / (x * ln(b))
Power Rule
n*x^(n-1)
Product Rule
u'v + uv'
Quotient Rule
(u'v - uv') / v^2
Chain Rule
f'(g(x)) * g'(x)
Integral of 1/(a^2 + x^2) dx = ?
(1/a)Arctan(x/a) + C
Integral of 1/sqrt(a^2 - x^2) dx = ?
Arcsin(x/a) + C
Integral of 1/(x*sqrt(x^2 - a^2)) dx = ?
(1/a)Arcsec(|x|/a) + C
Mean Value Theorem
f'(c) = (f(b) - f(a)) / (b - a)
Fundamental Theorem of Calculus Part 2
Integral from a to b of f(x)dx = F(b) - F(a)
dy/dt = ky
y = Ae^(kt)
Integration by Parts
∫udv = uv - ∫vdu
Logistic Differential Equation
P = M / (1 + Ae^(-kt))
Parametric Arc Length
Total distance traveled, integral of speed
Polar Equations
x = rcos(θ), y = rsin(θ)
Slope of the Curve in Polar
dy/dx = (dy/dθ) / (dx/dθ)
p-series
Converges if p > 1, diverges if p ≤ 1
nth Term Test for Divergence
If lim (n->inf) a_n != 0, then the series diverges
Taylor Series
f(a) + f'(a)(x-a) + f''(a)/2! (x-a)^2 + …
Disk Method
π∫[R(x)]^2 dx
Washer Method
π∫([R(x)]^2 - [r(x)]^2)dx
Shell Method
2π∫r(x)H(x)dx
Volumes of Known Cross Sections
∫ A(x)dx