AP Calculus BC Review

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/71

flashcard set

Earn XP

Description and Tags

Flashcards for AP Calculus BC review, covering integrals, arc length, error bounds, velocity, polar curves, series, L'Hopital's Rule, derivatives, and theorems.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

72 Terms

1
New cards

Integral Constant Multiple Rule

(\int k f(u) du = k \int f(u) du)

2
New cards

Integral of du

(\int du = u + C)

3
New cards

Power Rule for Integrals

(\int u^n du = \frac{u^{n+1}}{n+1} + C), where (n \neq -1)

4
New cards

Integral of 1/u

(\int \frac{1}{u} du = \ln|u| + C)

5
New cards

Integral of e^u

(\int e^u du = e^u + C)

6
New cards

Integral of a^u

(\int a^u du = \frac{a^u}{\ln a} + C)

7
New cards

Integral of cos(u)

(\int \cos u du = \sin u + C)

8
New cards

Integral of sin(u)

(\int \sin u du = -\cos u + C)

9
New cards

Integral of tan(u)

(\int \tan u du = -\ln|\cos u| + C)

10
New cards

Integral of cot(u)

(\int \cot u du = \ln|\sin u| + C)

11
New cards

Integral of sec(u)

(\int \sec u du = \ln|\sec u + \tan u| + C)

12
New cards

Integral of csc(u)

(\int \csc u du = -\ln|\csc u + \cot u| + C)

13
New cards

Integral of du/(u sqrt(u^2-a^2))

(\int \frac{du}{u \sqrt{u^2 - a^2}} = \frac{1}{a} \operatorname{arcsec} \frac{u}{a} + C)

14
New cards

Integral of du/sqrt(a^2 - u^2)

(\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C)

15
New cards

Integral of du/(a^2 + u^2)

(\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C)

16
New cards

Integration by Parts

(\int u dv = uv - \int v du)

17
New cards

Arc Length Formula (function)

(L = \int_a^b \sqrt{1 + [f'(x)]^2} dx)

18
New cards

Arc Length Formula (polar)

(L = \int{\theta1}^{\theta_2} \sqrt{[r(\theta)]^2 + [r'(\theta)]^2} d\theta)

19
New cards

Lagrange Error Bound

(|f(x) - P_n(x)| \le \frac{\max|f^{(n+1)}(z)|}{(n+1)!} |x-c|^{n+1})

20
New cards

Velocity

(v(t) = \frac{dx}{dt})

21
New cards

Acceleration

(a(t) = \frac{dv}{dt})

22
New cards

Velocity Vector

( \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle)

23
New cards

Speed

(|v(t)| = \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2})

24
New cards

Distance Traveled

(\int{ti}^{tf} |v(t)| dt = \int{ti}^{tf} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt)

25
New cards

Position Update Formula (x)

(x(b) = x(a) + \int_a^b x'(t) dt)

26
New cards

Position Update Formula (y)

(y(b) = y(a) + \int_a^b y'(t) dt)

27
New cards

Area inside a polar curve leaf

(\frac{1}{2} \int{\theta1}^{\theta_2} [r(\theta)]^2 d\theta)

28
New cards

Slope of polar curve

(\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{r(\theta) \cos \theta + r'(\theta) \sin \theta}{-r(\theta) \sin \theta + r'(\theta) \cos \theta})

29
New cards

Ratio Test for Convergence

Series converges if (\lim{n \to \infty} \left| \frac{a{n+1}}{a_n} \right| < 1)

30
New cards

Alternating Series Error Bound

(|S - SN| \le a{N+1})

31
New cards

Disk Method

(V = \pi \int_a^b [R(x)]^2 dx)

32
New cards

Washer Method

(V = \pi \int_a^b ([R(x)]^2 - [r(x)]^2) dx)

33
New cards

Shell Method

(V = 2\pi \int_a^b r(x) h(x) dx)

34
New cards

Volume of Known Cross Sections (x-axis)

(V = \int_a^c A(x) dx)

35
New cards

Volume of Known Cross Sections (y-axis)

(V = \int_a^c A(y) dy)

36
New cards

Taylor Series

(f(x) = f(c) + f'(c)(x-c) + \frac{f''(c)(x-c)^2}{2!} + \frac{f'''(c)(x-c)^3}{3!} + … + \frac{f^{(n)}(c)(x-c)^n}{n!})

37
New cards

Taylor Series expansion of e^x

(e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + …)

38
New cards

Taylor Series expansion of cos(x)

(\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + …)

39
New cards

Taylor Series expansion of sin(x)

(\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + …)

40
New cards

Taylor Series expansion of 1/(1-x)

(\frac{1}{1-x} = 1 + x + x^2 + x^3 + …)

41
New cards

Taylor Series expansion of ln(x+1)

(\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + …)

42
New cards

Geometric Series

(\sum_{n=0}^{\infty} Ar^n = \frac{A}{1-r}) if (|r| < 1)

43
New cards

L'Hopital's Rule

If (\lim{x \to a} f(x) = 0) and (\lim{x \to a} g(x) = 0) then (\lim{x \to a} \frac{f(x)}{g(x)} = \lim{x \to a} \frac{f'(x)}{g'(x)})

44
New cards

Average Rate of Change

(\frac{f(b) - f(a)}{b - a})

45
New cards

Definition of Derivative

(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h})

46
New cards

Power Rule

(\frac{d}{dx} x^n = nx^{n-1})

47
New cards

Derivative of sin(x)

(\frac{d}{dx} \sin x = \cos x)

48
New cards

Derivative of cos(x)

(\frac{d}{dx} \cos x = -\sin x)

49
New cards

Derivative of tan(x)

(\frac{d}{dx} \tan x = \sec^2 x)

50
New cards

Derivative of cot(x)

(\frac{d}{dx} \cot x = -\csc^2 x)

51
New cards

Derivative of sec(x)

(\frac{d}{dx} \sec x = \tan x \sec x)

52
New cards

Derivative of csc(x)

(\frac{d}{dx} \csc x = -\cot x \csc x)

53
New cards

Derivative of ln(u)

(\frac{d}{dx} \ln u = \frac{1}{u} \frac{du}{dx})

54
New cards

Derivative of e^u

(\frac{d}{dx} e^u = e^u \frac{du}{dx})

55
New cards

Derivative of log_a(x)

(\frac{d}{dx} \log_a x = \frac{1}{x \ln a})

56
New cards

Derivative of a^x

(\frac{d}{dx} a^x = a^x (\ln a) \frac{du}{dx})

57
New cards

Intermediate Value Theorem

If f is continuous on [a, b], then for any c between f(a) and f(b), there exists d in (a, b) such that f(d) = c.

58
New cards

Fundamental Theorem of Calculus

(\int_a^b f(x) dx = F(b) - F(a)) where (F'(x) = f(x))

59
New cards

Second Fundamental Theorem of Calculus

(\frac{d}{dx} \int_a^{g(x)} f(t) dt = f(g(x)) g'(x))

60
New cards

Chain Rule

(\frac{d}{dx} f(u) = f'(u) \frac{du}{dx})

61
New cards

Product Rule

(\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx})

62
New cards

Quotient Rule

(\frac{d}{dx} \frac{u}{v} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2})

63
New cards

Mean Value Theorem & Rolle's Theorem

If f(x) is continuous on [a, b] and differentiable on (a, b), then there exists c in (a, b) such that (f'(c) = \frac{f(b) - f(a)}{b - a}). If f(a) = f(b), then f'(c) = 0.

64
New cards

Critical Point Condition

(f'(x) = 0) or undefined

65
New cards

Average Value

(f(c) = \frac{1}{b-a} \int_a^b f(x) dx)

66
New cards

Euler's Method

(x{new} = x{old} + \Delta x) and (y{new} = y{old} + \frac{dy}{dx}(x{old}, y{old}) \Delta x)

67
New cards

Local Minimum Conditions

goes (-, 0, +) OR (-, undefined, +) OR (f''(x) > 0)

68
New cards

Local Maximum Conditions

goes (+, 0, -) OR (+, undefined, -) OR (f''(x) < 0)

69
New cards

Absolute Max/Min

Compare local extreme values to endpoints.

70
New cards

Logistics Curves

(P(t) = \frac{L}{1 + Ce^{-(Lk)t}})

71
New cards

Maximum growth rate of logistics curve

(P = \frac{1}{2} L)

72
New cards

Point of Inflection

Concavity changes; goes (+,0,-), (-,0,+), (+,und,-), or (-,und,+)