1/50
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
Intermediate Value Theorem
If f(x) is a continuous function on [a,b], then f(x) will take on all values between f(a) and f(b).
Slope
Average Rate of Change
Derivative
Instantaneous Rate of Change, or the Slope at a Point
Limit definition of a derivative
limh→0 (f(x+h) - f(x))/((x+h)-x)
d/dx (C)
0
d/dx (C * f(x))
C * f’(x)
d/dx (xC)
C*xC-1
d/dx (f(x) ± g(x))
f’(x) ± g’(x)
d/dx (f(x) * g(x))
f(x)*g’(x) + g(x)*f’(x)
d/dx (f(x)/g(x))
(g(x)*f’(x) - f(x)*g’(x))/((g(x))²)
or
LodHi - HidLo/Lo²
sin²(x) + cos²(x)
1
sin(A+B)
sinA*cosB + sinB*cosA
cos(A+B)
cosA*cosB - sinA*sinB
continuity
limx→A⁻f(x) = limx→A⁺f(x) = f(A)
limx→C (f(x) ± g(x))
limx→C f(x) ± limx→C g(x)
limx→C K
(K is another constant)
K
limx→C (K*f(x))
K * limx→C (f(x))
limx→C (f(x) * g(x))
limx→C f(x) * limx→C g(x)
limx→C (f(x) / g(x))
limx→C f(x) / limx→C g(x)
particle goes up
velocity is positive
acceleration is negative (going up more slowly, think Earth’s gravity)
particle goes down
velocity is negative
acceleration is negative
particle changes direction
velocity changes sign
particle speeds up
velocity and acceleration have the same sign
+/+ or -/-
Particle slows down
velocity and acceleration have opposite signs
+/- or -/+
d/dx sin(x)
cos(x)
d/dx cos(x)
-sin(x)
d/dx tan(x)
sec²(x)
d/dx sec(x)
sec(x)*tan(x)
d/dx csc(x)
-cot(x)*csc(x)
d/dx cot(x)
-csc²(x)
d/dx sin-1(x)
1/√(1-x²)
d/dx cos-1(x)
-1/√(1-x²)
d/dx tan-1(x)
1/(x²+1)
d/dx cot-1(x)
1/(x²+1)
d/dx sec-1(x)
1/(|x|*√(x²-1))
d/dx csc-1(x)
-1/(|x|*√(x²-1))
Extreme Value Theorem
if f is continuous on a closed interval [a,b], then f has a minimum and a maximum within the interval
Maximum
f’(x) changes from + → -
f’’(x) is +
Minimum
f’(x) changes from - → +
f’’(x) is -
Concave Up :)
MAKES MINIMUMS
f’’(x) is +
Concave Down :(
MAKES MAXIMUMS
f’’(x) is -
Point of Inflection
f’(x) has a (relative) maximum or minimum
f’’(x) changes sign
d/dx ex
ex
d/dx ln(x)
1/x
logc1
0
logcc
1
clogc(x)
x
logc(m*n)
logc(m) + logc(n)
logc(m/n)
logc(m) - logc(n)
logc(mn)
n*logc(m)
logc(m)
logn(m)/logn(c)