Chapter 9 Exercises: Proofs (Symbolic Logic)

0.0(0)
studied byStudied by 0 people
call kaiCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/35

encourage image

There's no tags or description

Looks like no tags are added yet.

Last updated 12:53 AM on 11/3/25
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No analytics yet

Send a link to your students to track their progress

36 Terms

1
New cards

proof

series of inferences, each one justified by a valid inference rule, that leads from the premises to the conclusion of the argument

2
New cards
  1. Premise

  2. Premise

  3. Premise

  4. [Proof Step] /Conclusion

  5. [Proof Step] [Justification]

n. Conclusion [Justification]

How is a proof constructed?

3
New cards

True

True or False: Only valid arguments have proofs.

4
New cards

False

  • Just because you can’t find a proof doesn’t mean that there isn’t one. You might just not have found it. 

True or False: If you’ve tried and failed to find a proof for an argument, then it follows that the argument is invalid. 

5
New cards

True

True or False: There is more than one correct proof for any valid argument.

6
New cards
  1. Modus Pollens

  2. Modus Tollens

  3. Disjunctive Syllogism

  4. Hypothetical Syllogism

  5. Simplification

  6. Conjunction

  7. Addition

  8. Constructive Dilemma

Which inference rules are introduced in this chapter?

7
New cards

True

True or False: The step on line 4, below, is a correct application of Modus Ponens. 

  1. A

  2. D

  3. B

  4. B              1, 3 MP

8
New cards

False

  • This tells us that B implies C IF A is the case, but we don’t actually know that A is true.

True or False: The step on line 3, below, is a correct application of modus ponens. 

  1. ⊃ (B ⊃ C)

  2. B

  3. C                  1, 2 MP

9
New cards

True

True or False: The step on line 3 is a correct application of disjunctive syllogism.

  1. K ∨ (M ● N)

  2. ∼K

  3. M ● N            1, 2 DS

10
New cards

True

True or False: The step on line 3 is a correct application of hypothetical syllogism.

  1. ⊃ (S ∨ T)

  2. (S ∨ T) ∼O

  3. R ∼O 1, 2 HS

11
New cards
  1. A

  2. C

  3. ∼C

  4. ∼B           2, 3 MT

Fill in the missing justification on line 4:

  1. A

  2. C

  3. ∼C

  4. ∼B [?]

12
New cards
  1. ( T)

  2. O

  3. O

  4. R         /T

  5. S               2, 3 MT

  6. R               4, 5 MP

  7. T         1, 6 DS

  8. T              5, 7 MP

The proof below requires only one more step to complete it. Fill in the final step and its justification:

  1. ( T)

  2. O

  3. O

  4. R         /T

  5. S               2, 3 MT

  6. R               4, 5 MP

  7. T         1, 6 DS

  8. [?]              [?]

13
New cards

False

  • Addition cannot occur with a conjunction (dot). Addition can only occur with a wedge.

True or False: The step below is a valid application of the addition rule (Add).

  1. R

  2. ● S          1, Add

14
New cards

True

True or False: The step below is a valid application of the simplification rule (Simp.)

  1. ● (T ⊃ ∼Q)

  2. T ⊃ ∼Q           1, Simp

15
New cards

False

  • You can only use simplification on a conjunction (dot), not a disjunction (wedge).

True or False: The step below is a valid application of the simplification rule (Simp)

  1. (K  T)

  2. K               1, Simp

16
New cards

True

True or False: The proof below is correct.

  1. A

  2. B

  3. D                        /B  D

  4. (A  B)  (C  D)      2, 3 Conj

  5. C                       1, Add

  6. D                       4, 5 CD

17
New cards
  1. S

  2. S

  3. N             /J  N

  4. J                      [1, 2 DS]

  5. N                     [3, Simp]

  6. N               [4, 5 Conj]

Fill in the missing justifications in the proof below:

  1. S

  2. S

  3. N             /J  N

  4. J                      [?]

  5. N                     [?]

  6. N               [?]

18
New cards
  1. A B

  2. B

  3. A C                   /C

  4. A                          1, 2 MT

  5. C                            3, 4 MP

Construct a proof for the argument below:

  1. A B

  2. B

  3. A C                   /C

19
New cards
  1. (B  C)

  2. B

  3. B A              /C

  4. A                   2, 3 MP

  5. C              1, 4 DS

  6. C                     2, 5 DS

Construct a proof for the argument below:

  1. (B  C)

  2. B

  3. B A              /C

20
New cards
  1. A (B C)

  2. A

  3. C

  4. B D               /D

  5. B C               1, 2 MP

  6. ∼B 3, 5 MT

  7. D 4, 6 DS

Construct a proof for the argument below:

  1. A (B C)

  2. A

  3. C

  4. B D               /D

21
New cards
  1. T (H L)

  2. T S

  3. S

  4. L O              /H O

  5. ∼T                  2, 3 MT

  6. H L              1, 5 DS

  7. H O             4, 6 HS

Construct a proof for the argument below:

  1. T (H L)

  2. T S

  3. S

  4. L O /H O

22
New cards
  1. D (C F)

  2. (C F) G

  3. G H

  4. H                   /D

  5. G              1, 2 HS

  6. H               3, 5 HS

  7. D                    4, 6 MT

Alternate: 

  1. ∼G                    3, 4 MT

  2. ∼D 5, 6 MT

Construct a proof for the argument below:

  1. D (C F)

  2. (C F) G

  3. G H

  4. H                  /D

23
New cards
  1. G

  2. ∼∼G

  3. H

  4. H            / I

  5. ∼F                1, 2 MT

  6. ∼H                3, 5 DS

  7. ∼I                  4, 6 MT

  8. ∼F ● I         5, 7 Conj 

Construct a proof for the argument below:

  1. G

  2. ∼∼G

  3. H

  4. H            / I

24
New cards
  1. A (E F)

  2. (F M)

  3. A H                      /E M

  4. A                              3, Simp

  5. H                           3, Simp

  6. E F                     1, 4 MP

  7. F M                    2, 5 DS

  8. E M                      6, 7 HS

Construct a proof for the argument below:

  1. A (E F)

  2. (F M)

  3. A H /E M

25
New cards
  1. (R S) (P Q)

  2. M R                 /S Q

  3. R                        2, Simp

  4. ∨ P                 3, Add

  5. S Q                 1, 4 CD

Construct a proof for the argument below:

  1. (R S) (P Q)

  2. M R /S Q

26
New cards
  1. L M

  2. L (M S)

  3. M                    /L S

  4. ∼L                     1, 3 MT

  5. M S             2, 4 DS

  6. L S              1, 5 HS

Construct a proof for the argument below:

  1. L M

  2. L (M S)

  3. M /L S

27
New cards
  1. E

  2. E (A B)

  3. A                         /B C

  4. E                            1, Simp

  5. A B                      2, 4 MP

  6. B                             3, 5 DS

  7. B C                      6, Add

Construct a proof for the argument below:

  1. E

  2. E (A B)

  3. A                         /B C

28
New cards
  1. E

  2. (A  B)

  3. A                   /B D

  4. D                      1, Simp

  5. E                       1, Simp

  6. ∨ B                2, 5 MP

  7. B                        3, 6 DS

  8. B D                 4, 7 Conj

Construct a proof for the argument below:

  1. E

  2. (A  B)

  3. A                   /B D

29
New cards
  1. (S R) P

  2. S T

  3. R T                  /P

  4. R                           3, Simp

  5. T                         3, Simp

  6. S                         2, 5 MT

  7. R                   4, 6 Conj

  8. P                            1, 7 MP

Construct a proof for the argument below:

  1. (S R) P

  2. S T

  3. R T                  /P

30
New cards
  1. A B

  2. C ⊃∼D

  3. E (A C)                /B D

  4. (A ⊃ B) ● (C ⊃∼D)     1, 2 Conj

  5. A C                          3, Simp

  6. B D                        4, 5 CD

Construct a proof for the argument below:

  1. A B

  2. C ⊃∼D

  3. E (A C) /B D

31
New cards
  1. A C

  2. H D

  3. H (A B)

  4. B D                   /C H

  5. H                          2, Simp

  6. A B                 3, 5 MP

  7. ∼D                     2, Simp

  8. ∼B                     4, 7 MT

  9. A                        6, 8 DS

  10. C                        1, 9 MP

  11. C H                 5, 10 Conj

Construct a proof for the argument below:

  1. A C

  2. H D

  3. H (A B)

  4. B D /C H

32
New cards
  1. (Q T)  S

  2. (H  M)  Q

  3. H

  4. N                  /S

  5. M                         4, Simp

  6. M                   3, 5 Conj

  7. Q                       2, 6 MP

  8. T                7, Add

  9. S                          1, 8 MP

Construct a proof for the argument below:

  1. (Q T)  S

  2. (H  M)  Q

  3. H

  4. N                  /S

33
New cards
  1. (D  M)  (R  A)

  2. J

  3. (S  T)

  4. M                      /S T

  5. M                     2, 4 HS

  6. A                      1, 5 MP

  7. R                             6, Simp

  8. S T                    3, 7 MP

Construct a proof for the argument below:

  1. (D  M)  (R  A)

  2. J

  3. (S  T)

  4. M                 /S T

34
New cards
  1. (F L) (R Q)

  2. D F

  3. (L  O) T            /T D

  4. D                            2, Simp

  5. F                            2, Simp

  6. ∨ R                    5, Add

  7. O                    1, 6 CD

  8. T                            3, 7 MP

  9. T D                     4, 8 Conj

Construct a proof for the argument below:

  1. (F L) (R O)

  2. D F

  3. (L  O) T /T D

35
New cards
  1. A B

  2. C (D B)

  3. A C /G

  4. A                     3, Simp

  5. B                    1, 4 MP

  6. C                     3, Simp

  7. D B            2, 6 MP

  8. B                   7, Simp

  9. ∨ G              5, Add

  10. G                    5, 9 DS

Construct a proof for the argument below:

  1. A B

  2. C (D B)

  3. A C /G

36
New cards
  1. ⊃ ∼S

  2. ∼S ⊃ ∼L

  3. ∼L ⊃ ∼C

  4. R ∨ G

  5. ∼R                        /∼C

  6. G                          4, 5 DS

  7. ∼S                        1, 6 MP

  8. ∼L                         2, 7 MP

  9. ∼C                        3, 8 MP

Alternate:

  1.  ∼L                    1, 2 HS

  2. G ⊃ ∼C                    3, 6 HS

  3. G                          4, 5 DS

  4. ∼C                        7, 8 MP

For this last exercise, we’ll go through all the familiar steps in the logic process. Identify the premises and the conclusion in the argument below, symbolize it using the indicated letters for the simple statements, and then test it by constructing a proof for it:

If Jupiter is a gaseous planet, then it doesn’t have a solid surface. If Jupiter has no solid surface, then you can’t land on it. If you can’t land on Jupiter, then it can’t be colonized. So, you can’t colonize Jupiter. For either the planet is rocky, or it’s gaseous. And Jupiter is not rocky.

Let G = Jupiter is a gaseous planet.
Let R = Jupiter is rocky.
Let S = Jupiter has a solid surface.
Let L = You can land on Jupiter.
Let C = Jupiter can be colonized.