1/16
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No analytics yet
Send a link to your students to track their progress
Laplace Transform of Linearity: \mathcal{L}{\beta f(t) + \gamma g(t)}
\beta F(s) + \gamma G(s)
Laplace Transform of a constant: \mathcal{L}{1}
\frac{1}{s}
Laplace Transform of an exponential: \mathcal{L}{e^{bt}}
\frac{1}{s-b}
Laplace Transform of sine: \mathcal{L}{\sin(bt)}
\frac{b}{s^2 + b^2}
Laplace Transform of cosine: \mathcal{L}{\cos(bt)}
\frac{s}{s^2 + b^2}
Time Scaling Property: \mathcal{L}{f(bt)}
\frac{1}{b} F\left(\frac{s}{b}\right)
Frequency Shifting Property: \mathcal{L}{e^{bt} f(t)}
F(s-b)
Laplace Transform of a first derivative: \mathcal{L}{f'(t)}
sF(s) - f(0)
Laplace Transform of an n-th derivative: \mathcal{L}{f^{(n)}(t)}
s^n F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)
Laplace Transform of an integral: \mathcal{L}{\int_{0}^{t} f(\tau) d\tau}
\frac{1}{s} F(s)
Multiplication by t (Frequency Derivative): \mathcal{L}{tf(t)}
-F'(s)
Laplace Transform of t^k e^{-t}
\frac{k!}{(s+1)^{k+1}}
Laplace Transform of convolution: \mathcal{L}{(f \ast g)(t)}
F(s)G(s)
Laplace Transform of Heaviside step function: \mathcal{L}{\theta(t)}
\frac{1}{s}
Time Shifting Property: \mathcal{L}{f(t-t0)\theta(t-t0)}
e^{-st_0} F(s)
Laplace Transform of Dirac delta function: \mathcal{L}{\delta(t)}
1
Laplace Transform of a power function: \mathcal{L}{t^k}
\frac{k!}{s^{k+1}}