1/22
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
\int dx=
x+C
∫kdx=
kx+C
∫\frac{1}{x}dx=
ln|x|+C
∫x^{-1}dx=
ln|x|+C
\int\frac{1}{ax+b}dx=
\frac{1}{a}ln|ax+b|+C
∫cos(x)dx=
sin(x)+C
∫sin(x)dx=
-cos(x)+C
∫sec^2(x)dx=
tan(x)+C
∫sec(x)tan(x)dx=
sec(x)+C
∫csc(x)cot(x)dx=
-csc(x)+C
∫csc^2(x)dx=
-cot(x)+C
∫tan(x)dx=
-ln|cos(x)|+C=ln|sec(x)|+C
∫cot(x)dx=
ln|sin(x)|+C=-ln|csc(x)|+C
∫sec(x)dx=
ln|sec(x)+tan(x)|+C
∫sec^3(x)dx=
\frac12[sec(x)tan(x)+ln|sec(x)+tan(x)|]+C
∫csc(x)dx=
ln|csc(x)-cot(x)|+C
∫csc^3(x)dx=
\frac12[-csc(x)cot(x)+ln|csc(x)-cot(x)|]+C
\int\frac{1}{\sqrt{a^2+x^2}}dx=
sin^{-1}(\frac{x}{a})+C
∫sin^{-1}(x)dx=
xsin^{-1}(x)+\sqrt{1-x^2}+C
\int\frac{1}{a^2+x^2}dx=
\frac{1}{a}tan^{-1}(\frac{x}{a})+C
∫tan^{-1}(x)dx=
xtan^{-1}(x)-\frac12ln(1+x^2)+C
\int\frac{1}{x\sqrt{x^2-a^2}}dx=
(\frac{1}{a})sec^{-1}(\frac{x}{a})+C
∫cos^{-1}(x)dx=
xcos^{-1}(x)-\sqrt{1-x^2}+C