1/21
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Pythagorean identities
1+cot*2=csc*2
1+ tan*2=sec*2
Sin*2+cos*2=1
Sin(x+y)
Sinxcosy+sinycosx
Cos(x+y)
Cosxcosy-sinxsiny
Tan(x+y)
Tanx+tany/1-tanxtany
Sin(2x)
2sinxcosx
Cos(2x)
(Cosx)*2-(sinx)*2
Tan(2x)
2tanx/1-tanx*2
Sin(x/2)
+ (1-cosx/2)*1/2
Cos(x/2)
+(1+cosx/2)*1/2
Tan(x/2)
1-cosx/sinx
Circle equation
(X-h)*2 + (y-k)*2 = r*2
Ellipse equation
(X-h)*2/(rx)*2 + (y-k)*2/(ry)*2 =1
Hyperbola equation
Opens left/right: (X-h)*2/(rx)*2 - (y-k)*2/(ry)*2 =1
Opens up/down: (y-k)*2/(ry)*2 - (x-h)*2/(rx)*2 =1
Parabola equation
Opens up/down: Y=a(x-h)*2+k
Opens left/right: x=a(y-k)*2+h
Polar conversions
X=rcosø
Y=rsinø
X*2+y*2=r*2
Tanø=y/x
Circle
r=2asinø centered at (a,π/2)
r=2acosø centered at (a,0)
Cardioid
Heart
r=a+acosø
r=a+asinø
Limacon
Heart with loop
r=a+bcosø
r=a+bsinø
Rose
Flower petals
r=acos(nø)
r=asin(nø)
If n is odd, rose has n leaves
If n is even, rose has 2n leaves
Lemniscate
Figure 8
r*2=a*2sin2ø
r*2=a*2cos2ø
IVT
since f(x) is continuous on [a,b] and f(a)<k<f(b), there exists at least one “c” on [a,b] such that f(c)=k
Continuous rules
F(k) is defined
Lim as x→k exists
Lim as x→k = f(k)