1/44
A set of vocabulary-style flashcards covering limits, derivatives, and integrals from the provided lecture notes.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
d/dx [x^n]
n x^{n-1} (n \neq -1).
d/dx [c f(x)]
c f'(x).
d/dx [f(x) g(x)]
f'(x) g(x) + f(x) g'(x).
d/dx \left[\frac{f(x)}{g(x)}\right]
\frac{f'(x) g(x) - f(x) g'(x)}{[g(x)]^2}.
d/dx [f(g(x))]
f'(g(x)) \cdot g'(x).
d/dx [\sin x]
\cos x.
d/dx [\cos x]
-\sin x.
d/dx [\tan x]
\sec^2 x.
d/dx [\cot x]
-\csc^2 x.
d/dx [\sec x]
\sec x \tan x.
d/dx [\csc x]
-\csc x \cot x.
d/dx [\ln x]
\frac{1}{x}.
d/dx [\log_b x]
\frac{1}{x \ln b}.
d/dx [\arcsin x]
\frac{1}{\sqrt{1 - x^2}}.
d/dx [\arccos x]
-\frac{1}{\sqrt{1 - x^2}}.
d/dx [\arctan x]
\frac{1}{1 + x^2}.
d/dx [\arcsec x]
\frac{1}{|x| \sqrt{x^2 - 1}}.
d/dx [\arccsc x]
-\frac{1}{|x| \sqrt{x^2 - 1}}.
ILATE
\text{Inverse Trig, Logarithmic, Algebraic, Trigonometric, Exponential (order for choosing } u\text{)}.
\int dx
x + C.
\int \sec x dx
\ln|\sec x + \tan x| + C.
\int \csc x dx
-\ln|\csc x + \cot x| + C.
\int \frac{1}{1 + x^2} dx
\arctan x + C.
\int \frac{1}{x} dx
\ln|x| + C.
\int \sec x \tan x dx
\sec x + C.
\int \csc x \cot x dx
-\csc x + C.
\int \frac{1}{a x + b} dx
\frac{1}{a} \ln|a x + b| + C.
\int \sqrt{x} dx
\frac{2}{3} x^{3/2} + C.
\int x^n dx
\frac{x^{n+1}}{n+1} + C \quad (n \neq -1).
\int e^x dx
e^x + C.
\sin(0)
( 0^{\circ}): y=0
\cos(0)
( 0^{\circ}): x=1
\tan(0)
( 0^{\circ}): 0
\sin(\pi/6)
( 30^{\circ}): \frac{1}{2}
\cos(\pi/6)
( 30^{\circ}): \frac{\sqrt{3}}{2}
\tan(\pi/6)
( 30^{\circ} ): \frac{\sqrt{3}}{3}
\sin(\pi/4)
( 45^{\circ} ): \frac{\sqrt{2}}{2}
\cos(\pi/4)
( 45^{\circ}): \frac{\sqrt{2}}{2}
\tan(\pi/4)
( 45^{\circ}): 1
\sin(\pi/3)
( 60^{\circ}): \frac{\sqrt{3}}{2} =y
\cos(\pi/3)
( 60^{\circ} ): \frac{1}{2} =x
\tan(\pi/3)
( 60^{\circ}): \sqrt{3}
\sin(\pi/2)
( 90^{\circ}): 1
\cos(\pi/2)
( 90^{\circ}): 0
\tan(\pi/2)
( 90^{\circ} ): Undefined