1/195
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Pauli Exclusion Principle
No two electrons can have the same set of four quantum numbers
S orbitals hold _ electrons
2
P orbitals hold _ electrons
6
D orbitals hold _ electrons
10
F orbitals hold _ electrons
14
Degenerate (single electron atom)
subshells with the same principal quantum number (meaning the same energy)
Higher principal quantum number = _ energy
higher
Energy of N =
-Ryhc/
n2
Degenerate (multielectron atom)
orbitals in the same subshell (l) have the same energy
Energy from least to greatest in terms of subshell due to penetration (multielectron atom)
S < P < D < F
Shielding
When electrons that are close to the nucleus protect the further away ones from being pulled in to the nucleus
Shielding causes _ effective nuclear charge (Zeff)
lower
When n increases, energy _
increases due to less attraction to the nucleus
Effective nuclear charge (Zeff)
the net charge experienced by one electron in a multielectron atom
Net charge
The balance of the attractive forces of the nucleus and the repulsive forces of other electrons
Smaller Zeff = _ energy
Greater
Penetration
The ability of core electrons to get closer to the nucleus rather than valence electrons
Closer proximity = _ attraction to the nucleus
greater
Bohr Model of Hydrogen
Electron in a hydrogen atom moves around in one fixed set of circular orbitals
Neils Bohr orbits
Energy levels
n=1 (bohr model)
ground state
n>1 (bohr model)
excited states
Where are electrons located (Bohr Model)
They must occupy one of the energy levels
Is there energy emitted when electrons are in an energy level (Bohr model)
No
Electrons can move from orbitals by what (Bohr Model)
Photon of light emission or absorption
Photon Emission Motion of Electron (Bohr Model)
Higher to lower
Photon Absorption Motion of Electron (Bohr Model)
lower to higher
As n increases, distance between energy levels _
decreases
Energy is 0 when
The electron is free of the nucleus
As n increases, the distance between the electron from the nucleus _ , and the energy becomes _ (less negative)
increases, higher
Energy of a transition
-Ry (1/nf2 - 1/ni2)
Energy (if given wavelength)
hc
/λ
Energy (if given frequency)
hv
De Broglie Equation
λ = h/ m (kg) x v (velo m/s)
Heisenberg Uncertainty Principle
We will never know for certain the position and velocity of electrons at any time
quantum numbers
describe orbitals and their properties within different atoms
Principle quantum number (n)
determines distance of electron from the nucleus and the energy of the orbital as well as the shell where it is located.
n (possible values)
any positive whole number 1 or greater
Angular momentum quantum number (l)
determines the shape of the orbital where the electron is located
l (possible values)
n-1
l value of 0 subshell letter
s
l value of 1 subshell letter
p
l value of 2 subshell letter
d
l value of 3 subshell letter
f
Magnetic quantum number (ml)
the orientations of the orbital
ml (possible values)
-l to +l
spin quantum number (ms)
spin behavior of an electron
ms (possible values)
+1/2 or -1/2
A single orbital can hold a max of _ electrons
2
Number of orbitals in a subshell
2l + 1
Orbital
the area around a nucleus where electrons can be found
S orbitals shape
sphere
p orbitals shape
dumbbell
d orbitals shape
clover
Nodes
area where there are no electrons
total number of nodes
n-1
Order of electron filling
1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p
Condensed Electron Configuration
[closest noble gas] and then the rest of configuration
Valence electrons (main group elements)
electrons in highest n
Core electrons (main group elements)
any electrons not in highest n
Valence electrons (transition metals)
s and d electrons with the highest n
Core electrons (tranistion metals)
any electrons not in the highest s or d
Transition metal configuration exceptions
Cr, Mo, Cu, Ag, Au
During transition metal configuration exceptions
One s electron is in the d orbitla
Excited state electron configurations
electron jumps from lower energy subshell to higher energy subshell
Pauli exclusion principle
no two electrons can have same set of quantum numbers
hund’s rule
in a shared orbital, all of the positive spinning electrons will be added before the negative ones
Electron configuration of cations
lose electrons from highest energy level
Electron configuration of anions
add electrons to the partially filled orbitals
Paramagnetic
having unpaired electrons in the electron configuration of ions or atoms
Diamagnetic
have a full electron configuration
effective nuclear charge(Zeff) (equation)
atomic number - core electrons
Atomic radius (periodic trend)
decreases left to right, increases up to down
effective nuclear charge (Zeff) trend
increases left to right
atomic radius trend reasoning (decrease left to right)
increase in number of protons without any more core electrons increasing (increasing Zeff), pull electrons in tighter
atomic radius trend reasoning (increase top to bottom)
energy level increases so they are further from the nucleus
Stronger attraction to the nucleus = _ the radius
smaller
trends in ion sizes (for an atom)
anion > neutral atom > cation
Gaining electrons = _ nuclear attractions (larger size)
less
Isoelectronic ions
ions with an identical number of electrons
If isoelectronic, more _ means smaller radius
protons
Ionization energy
amount of energy required to remove an electron from an ion or atom in gas phase
ionization energy is always _ (in terms of heat)
endothermic
first ionization energy
energy required to remove the first electron from an atom or ion in gas phase
1st Ionization Energy (generic equation)
X (g) → X+ (g) + e-
2nd Ionization Energy (generic equation)
X+ (g) → X2+ (g) + e-
second ionization energy
energy required to remove the second electron from an atom or ion in gas phase
2nd and higher ionization energies are always _ than first ionization energies
larger, more endothermic, more positive
Removing a core electron requires a much _ amount of energy
larger
First ionization energy (periodic trend)
increases left to right, decreases top to bottom
Reason for first ionization energy trend (left to right)
greater Zeff = stronger nuclear attraction = harder to remove electrons
Reason for first ionization energy trend (top to bottom)
radius increases = less attraction = electrons easier to remove
Ionization energy exceptions
If shell is close to full or half full (group 13,16), it takes less energy to make it full. If it is already full or half full, it takes more energy to make it not full (2,15).
Electron attachment enthalpy (ΔHEA)
the energy change associated with adding an electron to a neutral atom in gas phase
Electron attachment enthalpy (ΔHEA) (generic equation)
A (g) + e- → A- (g)
Electron attachment enthalpy (ΔHEA) is always _ in terms of heat
exothermic
Electron attachment enthalpy (ΔHEA) (period trend)
more negative left to right (more likely), less negative top to bottom (less likely)
Electron attachment enthalpy (ΔHEA) exceptions
More likely to go towards complete shell and hard to add to an already full shell.
Electron Affinity
energy required to remove an electron from an anion with a -1 charge
Electron Affinity (generic equation)
A- (g) → A (g) + e-