MSE 2001 : Crystal Systems, Lattice Types, Bravais Lattice, and Crystal Structure

0.0(0)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/28

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

29 Terms

1
New cards

How many crystal systems, lattice types and bravais Lattices are there?

7 crystal systems, 4 lattice types, and 14 Bravais Lattices

2
New cards

Cubic crystal system

a = b = c

α = B = y = 90°

<p>a = b = c </p><p><span>α = B = y = 90</span><strong>°</strong></p>
3
New cards

Hexagonal crystal system

a = b ≠ c

α = 120° , β = γ = 90°

<p>a = b <span>≠ c</span></p><p>α = 120° , β = γ = 90°</p>
4
New cards

Tetragonal crystal system

a = b ≠ c

α = β = γ = 90°

<p>a = b ≠ c</p><p>α = β = γ = 90°</p>
5
New cards

Orthorhombic crystal system

knowt flashcard image
6
New cards

Rhombohedral (trigonal) crystal system

knowt flashcard image
7
New cards

Monoclinic crystal system

knowt flashcard image
8
New cards

Triclinic crystal system

knowt flashcard image
9
New cards

What are the abbreviations for each lattice type?

  • Primitive/Simple

  • Body Centered

  • Base Centered

  • Face Centered

  • Primitive/Simple (P)

  • Body Centered (I)

  • Base Centered (C)

  • Face Centered (F)

10
New cards

Primitive (simple) lattice type

Lattice points (atoms) at each corner

<p>Lattice points (atoms) at each corner </p>
11
New cards

Body centered lattice type

Atoms at each corner + 1 atom in the center

<p>Atoms at each corner + 1 atom in the center</p>
12
New cards

Base centered lattice type

Atoms at all each corner + 2 atoms centered on faces

<p>Atoms at all each corner + 2 atoms centered on faces</p>
13
New cards

Face centered lattice type

Atoms at all corners + 6 atoms on faces (6 faces total, 1 atom per face)

<p>Atoms at all corners + 6 atoms on faces (6 faces total, 1 atom per face)</p>
14
New cards

Cubic primitive Bravais lattice

a = b = c

α = B = y = 90°

atoms at all corners of the cube

<p>a = b = c </p><p><span>α = B = y = 90</span><strong>°</strong></p><p>atoms at all corners of the cube</p>
15
New cards

Cubic body-centered Bravais lattice

a = b = c

α = B = y = 90°

Atoms in corners + 1 atom in the center

<p>a = b = c </p><p><span>α = B = y = 90</span><strong>°</strong></p><p><span>Atoms in corners + 1 atom in the center</span></p>
16
New cards

Hexagonal primitive Bravais lattice

a = b ≠ c

α = 120° , B = y = 90°

Atoms at all corners of unit cell

<p>a = b <span>≠ c</span></p><p><span>α = 120</span><strong>° , </strong>B = y = 90<strong>°</strong></p><p>Atoms at all corners of unit cell</p>
17
New cards

Tetragonal primitive Bravais lattice

a = b ≠ c

α = B = y = 90°

Atoms at all corners

<p>a = b <span>≠ c </span></p><p><span>α = B = y = 90</span><strong>° </strong></p><p>Atoms at all corners </p>
18
New cards

Tetragonal body-centered Bravais Lattice

a = b ≠ c

α = B = y = 90°

Atoms at all corners + 1 atom in the center

<p>a = b ≠ c </p><p>α = B = y = 90<strong>° </strong></p><p>Atoms at all corners + 1 atom in the center </p>
19
New cards

Orthorhombic primitive Bravais lattice

a ≠ b ≠ c

α = B = y = 90°

Atoms at all corners

<p>a ≠ b ≠ c </p><p>α = B = y = 90<strong>° </strong></p><p>Atoms at all corners</p>
20
New cards

Orthorhombic body-centered Bravais lattice

a ≠ b ≠ c

α = B = y = 90°

Atoms at all corners + 1 atom in the center

<p>a ≠ b ≠ c </p><p>α = B = y = 90<strong>° </strong></p><p>Atoms at all corners + 1 atom in the center</p>
21
New cards

Orthorhombic base centered Bravais lattice

a ≠ b ≠ c

α = B = y = 90°

Atoms at all corners + 2 atoms (centered on each face)

<p>a ≠ b ≠ c </p><p>α = B = y = 90<strong>° </strong></p><p>Atoms at all corners + 2 atoms (centered on each face)</p>
22
New cards

Orthorhombic face centered Bravais Lattice

a ≠ b ≠ c

α = B = y = 90°

Atoms at all corners + centered on each face (6 atoms total, 1 per face)

<p>a ≠ b ≠ c </p><p>α = B = y = 90<strong>° </strong></p><p>Atoms at all corners + centered on each face (6 atoms total, 1 per face)</p>
23
New cards

Rhombohedral (trigonal) primitive Bravais lattice

a = b = c

α = B = y ≠ 90°

Atoms at all corners

<p>a = b = c </p><p><span>α = B = y ≠ 90</span><strong>°</strong></p><p>Atoms at all corners</p>
24
New cards

Triclinic primitive Bravais Lattice

a ≠ b ≠ c

α ≠ B ≠ Y

Atoms at all corners

<p><span> a ≠ b ≠ c</span></p><p><span>α ≠ B ≠ Y </span></p><p>Atoms at all corners</p>
25
New cards

Monoclinic primitive Bravais lattice

a ≠ b ≠ c

α ≠ 90°

B = y = 90°

Atoms at all corners

<p>a <span>≠ b ≠ c</span></p><p><span>α ≠ 90</span><strong>°</strong></p><p><span>B = y = 90</span><strong>°</strong></p><p>Atoms at all corners </p>
26
New cards

Monoclinic body-centered Bravais lattice

a ≠ b ≠ c

α ≠ 90°

B = y = 90°

Atoms at all corners + 1 atom in the center

<p>a ≠ b ≠ c</p><p>α ≠ 90<strong>°</strong></p><p>B = y = 90<strong>°</strong></p><p>Atoms at all corners + 1 atom in the center</p>
27
New cards

Crystal structure “formula”

Crystal structure = Lattice + Basis

<p>Crystal structure = Lattice + Basis</p>
28
New cards

What is a lattice?

The place where we put things (map)

Lattice sites

29
New cards

What is a basis?

The stamps we put down

What we put on the lattice sites