1/37
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No analytics yet
Send a link to your students to track their progress

Multi-Axial Strain formula
\epsilon_x = \frac{1}{E} [\sigma_x - \nu(\sigma_y + \sigma_z)]
Thermal Deformation Formula
\delta_T = \alpha \cdot L \cdot \Delta T

Coefficient of Linear Thermal Expansion (α) for Steel
\alpha=11.6\times10^{-6}
Deformation Formula
\delta = \frac{PL}{AE}
Angle of Twist Formula
\theta = \frac{TL}{JG}
Springs in Parallel
K_{eq}=K_1+K_2+K_3+\ldots+K_{n}
Springs in Series
\frac{1}{K_{eq}}=\frac{1}{K_1}+\frac{1}{K_2}+\frac{1}{K_3}+\ldots+\frac{1}{K_n}
Spring Constant (K) formula
K = \frac{P}{\delta}
or
K = \frac{AE}{L}
Torsional Shear Stress formula
\tau = \frac{Tr}{J}

Moment for 2 Moving Loads
M_{max} = \frac{(PL - P_s d)^2}{4PL}
Moment-Curvature Equations
\kappa = \frac{1}{\rho} = \frac{M}{EI}
\rho = \frac{EI}{M}
Specific Shear Stress formula
\tau = \frac{VQ}{Ib}
fv,max for rectangular sections
\tau_{max}=\frac{3V}{2A}
fv,max for circular sections
\tau_{max}=\frac{4V}{3A}
fv,max for hollow circular sections
\tau_{max}=\frac{4V}{3A}\left(1+\frac{Dd}{D^2 + d^2}\right)
Shear Flow q formula
q=\frac{T}{2A_{o}}
Shear Stress in terms of Shear Flow
\tau=\frac{T}{2A_{o}t}
Cylinder Tank, Longitudinal and Tangential Stress
Longitudinal
\sigma_{L}=\frac{PD}{4t}
Tangential
\sigma_{C}=\frac{PD}{2t}
Cylinder Tank, Longitudinal and Tangential Stress
\sigma=\frac{PD}{4t}
Degree of Determinacy
Beams
i = r - 3n
Truss
i = (m + r) - 2j
Frames
i=(3m+r)-3j

M_{max} = \frac{PL}{4}
\delta_{max} = \frac{PL^3}{48EI}

M_{max} = \frac{wL^2}{8}
\delta_{max} = \frac{5wL^4}{384EI}

M_{max} = -PL
\delta_{max} = \frac{PL^3}{3EI}

M_{max} = -\frac{wL^2}{2}
\delta_{max} = \frac{wL^4}{8EI}

M_{max} = -\frac{wL^2}{6}
\delta_{max} = \frac{wL^4}{30EI}

M_{max} = -\frac{wL^2}{3}
\delta_{max} = \frac{11wL^4}{120EI}

M_{max(+)} = \frac{PL}{8}
\delta_{max} = \frac{PL^3}{192EI}

\delta_{max} = \frac{3Pa^2L - Pa^3}{6EI}

M_{A}=\frac{Pab^2}{L^2}
M_B = \frac{Pa^2b}{L^2}
R_A = \frac{Pb^2(3a + b)}{L^3}
R_B = \frac{Pa^2(a + 3b)}{L^3}
Tensile Strength (Gross Section Yielding)
P = 0.60 F_y A_g
Tensile Strength (Net Section Rupture)
P = 0.50 F_u A_n
Staggered Factor formula
\frac{s^2}{4g}
s - parallel to the force
g - perpendicular to the force
Block Shear formula
P = 0.5 F_u A_{nt} + 0.3 F_u A_{nv}
Length of Throat
0.707t

Ix of Bolts
i_x = \sum y^2
Ix of Welds
i_x = \sum \left( \frac{L^3}{12} + Ly^2 \right)
Caltech for Bolted Connections
\vec{R}=\left|\frac{P}{n}\angle\theta+\frac{T}{J}(y-xi)\right|
Caltech for Welded Connections
\vec{R}=\left|\frac{P}{L}\angle\theta+\frac{T}{J}(y-xi)\right|