1/7
Flashcards for Abstract Algebra I, Chapter 6: Isomorphisms, covering definitions, theorems, and exercises.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Isomorphism (Definition 1)
A one-to-one and onto mapping ๐ from ๐บ1 to ๐บ2 that preserves the group operation: ๐(๐ โ ๐) = ๐(๐) โ ๐(๐) for all ๐, ๐ โ ๐บ1. If such ๐ exists, ๐บ1 and ๐บ2 are isomorphic (๐บ1 โ ๐บ2).
Automorphism
An isomorphism from a group onto itself.
Steps to Prove ๐บ1 โ ๐บ2
1) Define a mapping ๐ from ๐บ1 to ๐บ2. 2) Prove ๐ is one-to-one (๐(๐) = ๐(๐) โ ๐ = ๐). 3) Prove ๐ is onto (for any ๐ โ ๐บ2, there exists ๐ โ ๐บ1 such that ๐(๐) = ๐). 4) Prove ๐ is operation-preserving (๐(๐ โ ๐) = ๐(๐) โ ๐(๐) for all ๐, ๐ โ ๐บ1).
Theorem 1 (Properties of Isomorphisms)
Let ๐: ๐บ1 โ ๐บ2 be an isomorphism. Then: 1) ๐ carries the identity of ๐บ1 to the identity of ๐บ2. 2) ๐ โ1: ๐บ2 โ ๐บ1 is an isomorphism. 3) ๐(๐^๐) = (๐(๐))^๐ for all ๐ โ ๐บ1 and for every integer ๐. 4) |๐| = |๐(๐)| for all ๐ โ ๐บ1. 5) |๐บ1| = |๐บ2| in case they are finite groups. 6) For any ๐, ๐ โ ๐บ1, ๐ and ๐ commute if and only if ๐(๐) and ๐(๐) commute. 7) ๐บ1 =
Inner Automorphism (Definition 2)
Let ๐บ be a group and ๐ โ ๐บ. The mapping ๐๐: ๐บ โ ๐บ defined by ๐๐(๐ฅ) = ๐๐ฅ๐ โ1 is an automorphism, called the inner automorphism of ๐ฎ induced by ๐.
๐ด๐ข๐ก(๐บ)
The set of all automorphisms of ๐บ.
๐ผ๐๐(๐บ)
The set of all inner automorphisms of ๐บ.
Theorem 2
Let ๐บ be a group. 1) (๐ด๐ข๐ก(๐บ), โ) is a group. 2) (๐ผ๐๐(๐บ), โ) is a group.