Abstract Algebra I - Chapter 6: Isomorphisms

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/7

flashcard set

Earn XP

Description and Tags

Flashcards for Abstract Algebra I, Chapter 6: Isomorphisms, covering definitions, theorems, and exercises.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

8 Terms

1
New cards

Isomorphism (Definition 1)

A one-to-one and onto mapping ๐œŒ from ๐บ1 to ๐บ2 that preserves the group operation: ๐œŒ(๐‘Ž โˆ™ ๐‘) = ๐œŒ(๐‘Ž) โˆ™ ๐œŒ(๐‘) for all ๐‘Ž, ๐‘ โˆˆ ๐บ1. If such ๐œŒ exists, ๐บ1 and ๐บ2 are isomorphic (๐บ1 โ‰ƒ ๐บ2).

2
New cards

Automorphism

An isomorphism from a group onto itself.

3
New cards

Steps to Prove ๐บ1 โ‰ƒ ๐บ2

1) Define a mapping ๐œŒ from ๐บ1 to ๐บ2. 2) Prove ๐œŒ is one-to-one (๐œŒ(๐‘Ž) = ๐œŒ(๐‘) โ‡’ ๐‘Ž = ๐‘). 3) Prove ๐œŒ is onto (for any ๐‘ โˆˆ ๐บ2, there exists ๐‘Ž โˆˆ ๐บ1 such that ๐œŒ(๐‘Ž) = ๐‘). 4) Prove ๐œŒ is operation-preserving (๐œŒ(๐‘Ž โˆ™ ๐‘) = ๐œŒ(๐‘Ž) โˆ™ ๐œŒ(๐‘) for all ๐‘Ž, ๐‘ โˆˆ ๐บ1).

4
New cards

Theorem 1 (Properties of Isomorphisms)

Let ๐œŒ: ๐บ1 โ†’ ๐บ2 be an isomorphism. Then: 1) ๐œŒ carries the identity of ๐บ1 to the identity of ๐บ2. 2) ๐œŒ โˆ’1: ๐บ2 โ†’ ๐บ1 is an isomorphism. 3) ๐œŒ(๐‘Ž^๐‘›) = (๐œŒ(๐‘Ž))^๐‘› for all ๐‘Ž โˆˆ ๐บ1 and for every integer ๐‘›. 4) |๐‘Ž| = |๐œŒ(๐‘Ž)| for all ๐‘Ž โˆˆ ๐บ1. 5) |๐บ1| = |๐บ2| in case they are finite groups. 6) For any ๐‘Ž, ๐‘ โˆˆ ๐บ1, ๐‘Ž and ๐‘ commute if and only if ๐œŒ(๐‘Ž) and ๐œŒ(๐‘) commute. 7) ๐บ1 =

5
New cards

Inner Automorphism (Definition 2)

Let ๐บ be a group and ๐‘Ž โˆˆ ๐บ. The mapping ๐œŒ๐‘Ž: ๐บ โ†’ ๐บ defined by ๐œŒ๐‘Ž(๐‘ฅ) = ๐‘Ž๐‘ฅ๐‘Ž โˆ’1 is an automorphism, called the inner automorphism of ๐‘ฎ induced by ๐’‚.

6
New cards

๐ด๐‘ข๐‘ก(๐บ)

The set of all automorphisms of ๐บ.

7
New cards

๐ผ๐‘›๐‘›(๐บ)

The set of all inner automorphisms of ๐บ.

8
New cards

Theorem 2

Let ๐บ be a group. 1) (๐ด๐‘ข๐‘ก(๐บ), โˆ˜) is a group. 2) (๐ผ๐‘›๐‘›(๐บ), โˆ˜) is a group.