Covers trig identities (reciprocal, quotient, Pythagorean, even & odd, and cofunction identities), sum and difference formulas, and double angle formulas.
Reciprocal: cosθ =
1/secθ
Reciprocal: sinθ =
1/cscθ
Reciprocal: tanθ =
1/cotθ
Reciprocal: secθ =
1/cosθ
Reciprocal: cscθ =
1/sinθ
Reciprocal: cotθ =
1/tanθ
Quotient: tanθ =
sinθ/cosθ
Quotient: cotθ =
cosθ/sinθ
Pythagorean: sin2θ + cos2θ =
1
Pythagorean: tan2θ + 1 =
sec2θ
Pythagorean: 1 + cot2θ =
csc2θ
Even & Odd: cos(-x) =
cosx
Even & Odd: sin(-x) =
-sinx
Even & Odd: tan(-x) =
-tanx
Even & Odd: sec(-x) =
secx
Even & Odd: csc(-x) =
-cscx
Even & Odd: cot(-x) =
-cotx
Cofunction: cos(π/2 - x) =
sinx
Cofunction: sin(π/2 - x) =
cosx
Cofunction: tan(π/2 - x) =
cotx
Cofunction: sec(π/2 - x) =
cscx
Cofunction: csc(π/2 - x) =
secx
Cofunction: cot(π/2 - x) =
tanx
Sum and Difference: sin(α + β) =
sin(α)cos(β) + cos(α)sin(β)
Sum and Difference: sin(α - β) =
sin(α)cos(β) - cos(α)sin(β)
Sum and Difference: cos(α + β) =
cos(α)cos(β) - sin(α)sin(β)
Sum and Difference: cos(α - β) =
cos(α)cos(β) + sin(α)sin(β)
Sum and Difference: tan(α + β) =
tan(α) + tan(β) / 1 - tan(α)tan(β)
Sum and Difference: tan(α - β) =
tan(α) - tan(β) / 1 + tan(α)tan(β)
Double Angle: sin(2α) =
2sin(α)cos(α)
Double Angle: cos(2α) =
cos2(α) - sin2(α)
or 2cos2(α) - 1
or 1 - 2sin2(α)
Double Angle: tan(2α) =
2tan(α) / 1 - tan2(α)